题面戳我

题意:给一棵树,树上有点权,每次操作为修改一个点的点权,或者是询问以某个点为根时,每棵子树(以每个点为根,就有n棵子树)点权和的平方和。

\(n\le2*10^5\),保证答案在long long范围内

sol

我们设\(s_i\)表示以\(p\)为整棵树的根时,以\(i\)为根的子树的点权和。设\(Sum\)表示所有点的点权和,即\(Sum=\sum_{i=1}^{n}val_i\)。

所以这道题给出\(p\),就是要你求\(\sum_{i=1}^{n}s_i^2\)。

我们先看\(\sum_{i=1}^{n}s_i\)怎么求。

考虑每个点的点权对\(\sum_{i=1}^{n}s_i\)的贡献,可以发现,每个点被计算了\(dep_i+1\)次,也就是说\(\sum_{i=1}^{n}s_i=\sum_{i=1}^{n}val_i(dep_i+1)=\sum_{i=1}^{n}val_idep_i+Sum\)。前面那一坨是不是有点熟悉?【ZJOI2015】幻想乡战略游戏

下文中为了方便描述,令\(calc(p)\)表示以\(p\)为根时的\(\sum_{i=1}^{n}val_idep_i\)

接下来我们考虑一下这个东西

\[\sum_{i=1}^{n}\sum_{j=1}^{n}val_ival_jdis(i,j)
\]

这个可以形象地理解为,在每一对点对\((i,j)\)的路径上每一条边(刚好是\(dis(i,j)\)条边)上都加上\(val_ival_j\),然后求整棵树上的边权之和。

现在我们考虑每一条边上的权值,它应该等于它两侧连接的两坨树的点权和的乘积。而连接的这两坨树中,不论取哪个\(p\)为根,都有有且仅有一坨树会是一棵子树。所以这个权值会等于\(s_i(Sum-s_i)\)。所以

\[\sum_{i=1}^{n}\sum_{j=1}^{n}val_ival_jdis(i,j)=\sum_{i=1}^{n}s_i(Sum-s_i)
\]

这同时也证明了不论取哪个\(p\)作为根,\(\sum_{i=1}^{n}s_i(Sum-s_i)\)都不会变。

令\(W=\sum_{i=1}^{n}s_i(Sum-s_i)\),可以先\(O(n)\)地\(DP\)出\(W\)的初值,然后就只要考虑一个点权修改对\(W\)的影响。

因为\(W=\sum_{i=1}^{n}\sum_{j=1}^{n}val_ival_jdis(i,j)\),若节点\(i\)的点权的变化量为\(\Delta v\),那么\(\Delta W=\Delta v\sum_{j=1}^{n}val_jdis(i,j)\),相当于\(\Delta v*calc(i)\),所以说一样地计算即可。

所以最终询问的答案就是:

\[\sum_{i=1}^{n}s_i^2=Sum*\sum_{i=1}^{n}s_i-W=Sum(calc(i)+Sum)-W
\]

code

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int N = 200005;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
struct edge{int to,next;}a[N<<1];
int n,q,val[N],head[N],cnt,pa[N],dep[N],sz[N],son[N],top[N];
void dfs1(int u,int f)
{
pa[u]=f;dep[u]=dep[f]+1;sz[u]=1;
for (int e=head[u];e;e=a[e].next)
{
int v=a[e].to;if (v==f) continue;
dfs1(v,u);
sz[u]+=sz[v];if (sz[v]>sz[son[u]]) son[u]=v;
}
}
void dfs2(int u,int f)
{
top[u]=f;
if (son[u]) dfs2(son[u],f);else return;
for (int e=head[u];e;e=a[e].next)
if (a[e].to!=pa[u]&&a[e].to!=son[u])
dfs2(a[e].to,a[e].to);
}
int lca(int u,int v)
{
while (top[u]^top[v])
{
if (dep[top[u]]<dep[top[v]]) swap(u,v);
u=pa[top[u]];
}
return dep[u]<dep[v]?u:v;
}
int getdis(int u,int v){return dep[u]+dep[v]-(dep[lca(u,v)]<<1);}
int tot,root,vis[N],w[N],fa[N];
ll sum[N],gather[N],tofa[N],sigma,omega,ans;
void getroot(int u,int f)
{
sz[u]=1;w[u]=0;
for (int e=head[u];e;e=a[e].next)
{
int v=a[e].to;if (v==f||vis[v]) continue;
getroot(v,u);
sz[u]+=sz[v];w[u]=max(w[u],sz[v]);
}
w[u]=max(w[u],tot-sz[u]);
if (w[u]<w[root]) root=u;
}
void solve(int u,int f)
{
fa[u]=f;vis[u]=1;
for (int e=head[u];e;e=a[e].next)
{
int v=a[e].to;if (vis[v]) continue;
tot=sz[v];
root=0;
getroot(v,0);
solve(root,u);
}
}
void modify(int u,int v)
{
sum[u]+=v;
for (int i=u;fa[i];i=fa[i])
{
int dist=getdis(u,fa[i]);
sum[fa[i]]+=v;
gather[fa[i]]+=dist*v;
tofa[i]+=dist*v;
}
}
ll calc(int u)
{
ll res=gather[u];
for (int i=u;fa[i];i=fa[i])
{
int dist=getdis(u,fa[i]);
res+=(ll)dist*(sum[fa[i]]-sum[i]);
res+=gather[fa[i]]-tofa[i];
}
return res;
}
void DP(int u)
{
sz[u]=val[u];
for (int e=head[u];e;e=a[e].next)
{
int v=a[e].to;if (v==pa[u]) continue;
DP(v);sz[u]+=sz[v];
}
omega+=1ll*sz[u]*(sigma-sz[u]);
}
int main()
{
n=gi();q=gi();
for (int i=1;i<n;i++)
{
int u=gi(),v=gi();
a[++cnt]=(edge){v,head[u]};head[u]=cnt;
a[++cnt]=(edge){u,head[v]};head[v]=cnt;
}
dfs1(1,0);dfs2(1,1);
tot=w[0]=n;
getroot(1,0);
solve(root,0);
for (int i=1;i<=n;i++)
val[i]=gi(),modify(i,val[i]),sigma+=val[i];
DP(1);
while (q--)
{
int opt=gi(),x=gi();
if (opt==1)
{
int y=gi();
modify(x,y-val[x]);sigma+=y-val[x];
omega+=(y-val[x])*calc(x);
val[x]=y;
}
else printf("%lld\n",(calc(x)+sigma)*sigma-omega);
}
return 0;
}

[Luogu3676]小清新数据结构题的更多相关文章

  1. [luogu3676] 小清新数据结构题 [树链剖分+线段树]

    题面 传送门 思路 本来以为这道题可以LCT维护子树信息直接做的,后来发现这样会因为splay形态改变影响子树权值平方和,是splay本身的局限性导致的 所以只能另辟蹊径 首先,我们考虑询问点都在1的 ...

  2. Luogu3676 小清新数据结构题 动态点分治

    传送门 换根类型的统计问题动态点分治都是很好做的. 设所有点的点权和为$sum$ 首先,我们先不考虑求$\sum\limits_i s_i^2$,先考虑如何在换根的情况下求$\sum\limits_i ...

  3. Luogu3676 小清新数据结构题(树链剖分+线段树)

    先不考虑换根.考虑修改某个点权值对答案的影响.显然这只会改变其祖先的子树权值和,设某祖先原子树权值和为s,修改后权值增加了x,则对答案的影响为(s+x)2-s2=2sx+x2.可以发现只要维护每个点到 ...

  4. 【Luogu3676】小清新数据结构题(动态点分治)

    [Luogu3676]小清新数据结构题(动态点分治) 题面 洛谷 题解 先扯远点,这题我第一次看的时候觉得是一个树链剖分+线段树维护. 做法大概是这样: 我们先以任意一个点为根,把当前点看成是一棵有根 ...

  5. [P3676]小清新数据结构题

    Description: 给你一棵树,每次询问以一个点为根时所有子树点权和的平方和 带修改 Hint: \(n\le 2*10^5\) Solution: 这题只要推出式子就很简单了 如果不换根这个平 ...

  6. 洛谷P3676 小清新数据结构题(动态点分治+树链剖分)

    传送门 感觉这题做下来心态有点崩……$RMQ$求$LCA$没有树剖快我可以理解为是常数太大……然而我明明用了自以为不会退化的点分然而为什么比会退化的点分跑得反而更慢啊啊啊啊~~~ 先膜一波zsy大佬 ...

  7. 洛谷 P3676 小清新数据结构题

    https://www.luogu.org/problemnew/show/P3676 这题被我当成动态dp去做了,码了4k,搞了一个换根的动态dp #include<cstdio> #i ...

  8. 洛谷 P3676 - 小清新数据结构题(动态点分治)

    洛谷题面传送门 题目名称好评(实在是太清新了呢) 首先考虑探究这个"换根操作"有什么性质.我们考虑在换根前后虽然每个点的子树会变,但整棵树的形态不会边,换句话说,割掉每条边后,得到 ...

  9. 洛谷P3676 小清新数据结构题 [动态点分治]

    传送门 思路 这思路好妙啊! 首先很多人都会想到推式子之后树链剖分+线段树,但这样不够优美,不喜欢. 脑洞大开想到这样一个式子: \[ \sum_{x} sum_x(All-sum_x) \] 其中\ ...

随机推荐

  1. 克隆虚拟机以及两台linux机器相互登录:linux学习第四篇

    克隆虚拟机 1.      克隆 之后自己命名克隆的虚拟机并自己选择存放位置,完成克隆 2.      克隆虚拟机之后对新的虚拟机修改网络配置,以免冲突(将配置文件里的UUID去掉,并修改IP地址) ...

  2. nginx的location优先级

    在nginx配置文件中,location主要有这几种形式: 1. 正则匹配 location ~ /abc { } 2. 不区分大小写的正则匹配 location ~* /abc { } 3. 匹配路 ...

  3. git添加本地仓库与远程仓库连接

    在本地建立一个文件夹,需要与远程git仓库进行连接,具体方法: <1>首先进入所在文件目录执行:  git init 初始化git,紧接着 git  add . git commit -m ...

  4. float 与 display:inline-block

    float: 1.会导致高度塌陷 <style type="text/css"> li{ float:left; height:200px; width:200px; ...

  5. Spring data mongodb 替换 Repository 实现类,findAll 排除 字段

    因文档比较大,有时候findAll 不想返回所有数据.没有找到默认的findAll 能够include 或者 exclude 的方法,所以想办法扩展一下实现类 query.fields().inclu ...

  6. Flask下载文件

    前言 由于最近在做文件管理模块的功能,所以难免会遇到文件上传下载这块的功能.不过文件上传那块是调用的OSS api,所以接触的不多. 文件的下载: 1. 接口返回真实的文件 这种情况比较简单, fla ...

  7. JDBC底层原理

    Class.forName(“com.mysql.jdbc.Driver”)是 强制JVM将com.mysql.jdbc.Driver这个类加载入内存,并将其注册到DriverManager类,然后根 ...

  8. 【其他】Objective-C 内存管理学习总结

    转载请注明出处:http://www.cnblogs.com/shamoyuu/p/OC_CG.html 最近学习了Objective-C语言(以下简称OC),其他的都还好,唯有它的内存管理让我不知所 ...

  9. 多线程实现之Java

    关于Java线程的生命周期,请看下面这张图: 新建状态(New):当线程对象创建后,即进入了新建状态,如:Thread t = new MyThread(); 就绪状态(Runnable):当调用线程 ...

  10. Android常见Crash类型分析(一)

    问题1.   java.lang.IllegalStateException: The specified child already has a parent. You must call remo ...