题面

Description

一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会。今年的面具都是主办方特别定制的。每个参加舞会的人都可以在入场时选择一个自己喜欢的面 具。每个面具都有一个编号,主办方会把此编号告诉拿该面具的人。为了使舞会更有神秘感,主办方把面具分为k (k≥3)类,并使用特殊的技术将每个面具的编号标在了面具上,只有戴第i 类面具的人才能看到戴第i+1 类面具的人的编号,戴第k 类面具的人能看到戴第1 类面具的人的编号。

参加舞会的人并不知道有多少类面具,但是栋栋对此却特别好奇,他想自己算出有多少类面具,于是他开始在人群中收集信息。

栋栋收集的信息都是戴第几号面具的人看到了第几号面具的编号。如戴第2号面具的人看到了第5 号面具。栋栋自己也会看到一些编号,他也会根据自己的面具编号把信息补充进去。由于并不是每个人都能记住自己所看到的全部编号,因此,栋栋收集的信 息不能保证其完整性。现在请你计算,按照栋栋目前得到的信息,至多和至少有多少类面具。由于主办方已经声明了k≥3,所以你必须将这条信息也考虑进去。

Input

输入第一行包含两个整数n, m,用一个空格分隔,n 表示主办方总共准备了多少个面具,m 表示栋栋收集了多少条信息。

接下来m 行,每行为两个用空格分开的整数a, b,表示戴第a 号面具的人看到了第b 号面具。相同的数对a, b 在输入文件中可能出现多次。

Output

输出包含两个数,第一个数为最大可能的面具类数,第二个数为最小可能的面具类数。如果无法将所有的面具分为至少3 类,使得这些信息都满足,则认为栋栋收集的信息有错误,输出两个-1。

Sample Input

样例1:

6 5

1 2

2 3

3 4

4 1

3 5

样例2:

3 3

1 2

2 1

2 3

Sample Output

样例1:

4 4

样例2:

-1 -1

Hint

数据范围:

50%的数据,满足n ≤ 300, m ≤ 1000;

100%的数据,满足n ≤ 100000, m ≤ 1000000。 

题解

orz QT666

出题直接出这种原题。。

考场各种yy,搞出了70分。。。


不乱说了,回归正题。

归结一下题意:

给定一张图,每个点有一个编号\(1..k\)

给定若干条边

边一定是从编号\(i\)连向编号\(i+1\),

且编号\(K\)连向编号\(1\)

求K的最大最小可能值

因为边是单向,其实,图一共就几种情况:

\(1\).环

若干个节点首位相连,那么答案一定是当前环的长度的一个因数。

\(2.\)伪环

这个的处理和环是类似的,等下一起讲。

伪环的形式大概是:

1---->2---->3---->4------
| |
| ↓
----------------------->5

\(3.\)链

如果不存在环或者伪环,

那么,最大的\(K\)值一定就是所有的链长之和

你可以想象为若干链,然后把链首位相连,然后从1开始编号


接下来考虑如何处理环和伪环

对于伪环,我们可以考虑是一个边向回走,

然后对应的编号再减少,

因此,存边的时候,正边边权为\(1\),反边边权为\(-1\)

于是伪环也可以变成正环处理。


继续想,怎么计算答案,

因为最终的答案就是所有环的大小\(gcd\),

求环的大小就是一遍\(DFS\)

而环的大小的求法也不难,

首先给每个节点依次记录从出发点开始的距离

如果当前点被第二次访问过,

那么,环的大小就是 \(|dis-dis'|\)

而链的长度则是当前\(DFS\)出的最大的距离减去最小的距离


问题差不多解决了,关于\(k≥3\)的限制分类讨论即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 110000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next;
}e[MAX*20];
int h[MAX],cnt=0,n,m;
int M1,M2,M;
bool vis[MAX];
int ans=0,dfn[MAX];
inline void Add(int u,int v)
{
e[cnt]=(Line){v,h[u]};
h[u]=cnt++;
}
int gcd(int a,int b)
{
return !a?b:gcd(b%a,a);
}
void DFS(int u,int w)
{
dfn[u]=w;vis[u]=true;
M1=min(M1,w);M2=max(M2,w);
for(int i=h[u];i!=-1;i=e[i].next)
{
int v=e[i].v,ww=w+((i&1)?-1:1);
if(!vis[v])
{
DFS(v,ww);
}
else
ans=gcd(ans,abs(dfn[v]-ww));
}
}
int main()
{
memset(h,-1,sizeof(h));
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
for(int i=1;i<=n;++i)
if(!vis[i])
{
DFS(i,0);
M+=M2-M1+1;
M2=M1=0;
}
if(ans>=3)
{
printf("%d ",ans);
for(int i=3;i<=ans;++i)
if(ans%i==0)
{
printf("%d\n",i);
return 0;
}
}
if(ans==0&&M>=3)
{
printf("%d 3\n",M);
return 0;
}
puts("-1 -1");
return 0;
}

【NOI2008】假面舞会(图论,搜索)的更多相关文章

  1. BZOJ1064 NOI2008 假面舞会 图论

    传送门 将一组关系\((A,B)\)之间连一条边,那么显然如果图中存在环长为\(len\)的环,那么面具的种数一定是\(len\)的因数. 值得注意的是这里环的关系除了\(A \rightarrow ...

  2. [NOI2008]假面舞会 (搜索+gcd)

    题意 LuoguP1477 题解 对于每一条边(u,v)(u,v)(u,v),建两条边(u→v,1),(v→u,−1)(u\to v,1),(v\to u,-1)(u→v,1),(v→u,−1).跑b ...

  3. 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]

    BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1655  Solved: 798[Submit][S ...

  4. 【洛谷】1477:[NOI2008]假面舞会【图论】

    P1477 [NOI2008]假面舞会 题目描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会. 今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具 ...

  5. [BZOJ1064][Noi2008]假面舞会

    [BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...

  6. NOI2008假面舞会

    1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 462[Submit][Status] ...

  7. 【BZOJ1064】[Noi2008]假面舞会 DFS树

    [BZOJ1064][Noi2008]假面舞会 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择 ...

  8. 【做题记录】[NOI2008] 假面舞会—有向图上的环与最长链

    luogu 1477 [NOI2008] 假面舞会 容易发现: 如果图中没有环,那么面具种数一定是所有联通块内最长链之和,最少为 \(3\) . 如果有环,则面具种数一定是所有环的大小的最大公约数. ...

  9. 【图论 搜索】bzoj1064: [Noi2008]假面舞会

    做到最后发现还是读题比赛:不过还是很好的图论题的 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选 ...

  10. 1064: [Noi2008]假面舞会 - BZOJ

    Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办 ...

随机推荐

  1. jq模仿雨滴下落的动画

    效果如图: 实现思路:定时器每隔x秒生成宽高.下落速度(即动画执行时间).left随机的div. 1.CSS: body{ overflow: hidden;/*这是为了防止出现滚动条*/ } .co ...

  2. Java集合中的Map接口

    jdk1.8.0_144 Map是Java三种集合中的一种位于java.util包中,Map作为一个接口存在定义了这种数据结构的一些基础操作,它的最终实现类有很多:HashMap.TreeMap.So ...

  3. 接口测试基础(fiddler、postman的使用、python实现测试接口程序)

    写在前面:本文主要的章节规划: 1.什么是接口测试    另外,有的时候会直接调用别的公司的接口,比如银行的.淘宝的.支付宝的,此时也需要做接口测试以及验证数据: 做接口测试的好处:      其中, ...

  4. FIO性能测试

    FIO参数中,ioengine使用libaio,并发jobs数固定为1,通过iodepth来控制压力.分别测试随机读.随机写,作为读写的性能基准.不测试顺序读写,不测试混合读写. 1.测试IOPS峰值 ...

  5. REST&RESTFUL

    REST(表征性状态传输,Representational State Transfer)指的是一组架构约束条件和原则.是Roy Fielding博士在2000年他的博士论文中提出来的一种软件架构风格 ...

  6. SQLSERVER中分割字符串成多列

    今天修改到之前的大佬的代码,居然把多个Id存在一个列里面,还是用的逗号分割...特么查询的时候怎么办??? 网上搜索了半天,终于找到了SqlServer里面有一个PARSENAME函数,可以按.(点) ...

  7. hdu1061(2015-N1):1.快速幂;2.找规律

    1.快速幂 原理:求a的b次方,将b转化为二进制数,该二进制位第i位的权是2^(i-1), 例如 11的二进制是1011 11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1 因此,我们将a¹ ...

  8. nginx启动停止

    nginx -s reload :修改配置后重新加载生效 nginx -s reopen :重新打开日志文件 nginx -t -c /path/to/nginx.conf 测试nginx配置文件是否 ...

  9. Android开发——fragment中数据传递与刷新UI(更改控件)

    数据传递: 1.通过数据库进行数据的传递 如在fragment中将数据保存在数据库中,之后其他的fragment或者activity直接读取数据库中的数据,数据库使用还算简单,这里就不多说,建议使用l ...

  10. 嵌入式Linux引导过程之1.6——Xloader的Xloader_Entry

    我们已经看完了XLOADER_ENTRY里调用的前两个标号的代码,分别是sys_init和ddr_init.对于一个嵌入式系统来说,这两 个部分的代码是在一开始就执行的,至少是在从bootrom里面的 ...