说起迷宫想必大家都很熟悉,个人感觉迷宫对人的方向感是很大的考验,至少我的方向感是不好的,尤其是在三维空间中。由于这段时间帮导师做项目用到了三维作图,便心血来潮想做个三维迷宫玩玩。要想画出三维的迷宫游戏,我们需要先从二维开始。

二维迷宫:

迷宫的程序描述:
        现实生活中,我们经常将问题用数学的方法来描述并解决(数学建模)。同样的,我们想用程序来解决问题,就得把问题程序化。废话不多说,进入正题:
        我们可以用一个矩阵matrix来描绘整个迷宫元素为1,代表是空的,元素为0代表墙为了描述问题的方便,下面都采用9行9列的矩阵来说明问题,并且假设(0,0)为入口,(1,1)为出口。
        网上也有一些常见的迷宫程序,但是它们都有一种特点,就是生成的迷宫可能没有从入口到出口的可达路径(可以通过循环来生成迷宫,直到有可达路径),或则从入口到出口有几条可达路径(如果想要只有唯一可达路径,就不行了)。这些算法大多数是通过随机数来产生迷宫矩阵matrix(随机产生0,1元素),然后通过迭代、回溯算法来找入口到出口的路径。由于矩阵matrix是随机的,这就不能保证入口到出口是可达的,这就是导致上面问题。
算法思想:
       想必大家都学过树(关于树的相关操作可以看我之前的文章)这种数据结构,比如说树的遍历DFS、BFS,树的深度等等操作。当然树的类型也有很多,如完全二叉树、红黑树、B树等等。但是我现在要说的不是这些,而是另一个我发现的性质:一个节点到另一个节点的路径有且只有一条!  现在就能和前面我说的那个问题联系起来了。下面看看是怎么联系的:
       我们首先将整个矩阵matrix的元素初始化为0即认为全都是墙,我们的任务就是拆墙(使元素等于1)来构成迷宫。怎么拆墙是我们算法的关键!
       首先,我们随便在矩阵中找一个初始点A(4,4),将该点的值设为1,即将该点的墙拆掉。  
       然后,产生一个0到3的随机整数randnum(0,1,2,3分布代表上下左右四个方向),在随机数randnum表示的方向进行拆墙(注意是连拆两块),如果该方向上与目前位置隔一块的位置没有墙,就不能拆,则需要再产生随机数,在其他方向上拆墙。(注意拆墙的前提是该方向隔一块的位置是墙)    
       最后,在上一步骤中,一直循环,直到当前位置四个方向的隔一块的位置都没有墙可拆,就进行回溯(回退到当前位置的上一个位置),然后进行上一步骤的操作,直至没有墙可拆!。

       我一直相信图像是比文字更能说话的,下面我们用图像来说明上述步骤:
       在强调一下:我们举例都采用9行9列的矩阵,初始点为(4,4)。

1.最开始时,只有初始点处的墙被拆掉

2、随机数randnum=2,开始向左边拆墙,由于(4,2)为0(有墙),可以拆,于是拆掉(4,2)、(4,3)位置的墙,则结果如下:

3、接着产生随机数randnum=1,开始向下拆墙,由于(6,2)为0(有墙),可以拆,于是拆掉(5,2)、(6,2)位置的墙,结果如下:

4、继续产生随机数randnum=0,开始向上拆墙,由于(4,2)为1没有墙,不可以拆,于是重新产生随机数,结果与上一张图一样:

5、继续产生随机数randnum=3,开始向右拆墙,由于(6,4)为0有墙,可以拆,于是拆掉(6,3)、(6,4)位置的墙,结果如下:

按照上述步骤重复下去,最终得到一个可能的迷宫矩阵如下:

注意事项:
1、迷宫矩阵的行和列必须为基数,初始点的位置必须为偶数。(这是由算法决定的,因为算法总是从初始点出发,步长为2,到达入口点和出口点,所以初始点与入口点、出口点的横纵坐标的距离都应该是步长2的倍数)。
2、初始点的选择最好在矩阵的中间位置,可以这样想象:算法的本质就是从初始点出发到达其他点,中间会产生分支(回溯的原因,如果回溯到初始点,则是在初始点就产生分支)到达其它点(包括入口点和出口点)。因此我们可以描述成一棵树,而初始点便是树的根节点。为了更快的找到出口点与入口点的可达路径,应使树的深度较小,这样就应该将初始点选在中间位置。
3、在进行判断时,为什么要选择看隔一块是否是墙,而不是相邻块、或则隔几块?因为隔一块的话,路与墙的宽度就一样了(取相邻块或则隔几块的情况大家可以实验推导一下!)

上面我用图文并茂的方法讲述了如何生成迷宫,下面我们来看看如何生成入口到出口的可达路径:
如上一张图所示,黄色部分就是可达路径(是唯一一条),由于迷宫较小,我们可以一眼看出,当迷宫较大时,我们就要靠矩阵来计算了。在上面的迷宫生成算法中,我们可以在拆墙的时候来记录节点,则当拆到入口时,便记录了从初始点到入口的路径,同理,我们也可以得到初始点到出口的路径,这样根据这两条路径就很容易得到入口到出口的路径了。前面我也说过,整个算法就是生成树的过程,其中初始点为根节点,找到可达路径相当于找到树中入口节点到出口节点的路径。前面我也提到,该树中任意两个节点的可达路径是唯一的,所以该算法生成的迷宫的入口到出口的路径是唯一的。

至此,我们已经讲述了整个的算法思想和流程,下面给出源代码(c++,vs2010实现),源文件给出了详细的注释,就不过多解释。程序总共5个文件:1、Maze.h   2、Maze.cpp  3、MazeStack.h  4、MazeStack.cpp  5、main.cpp。具体内容如下:
1、Maze.h
#include<iostream>
#include<ctime>

#include<vector>

#define M 9//迷宫的行
#define N 9//迷宫的列
//构造迷宫类型//

using namespace std;
class MazeStack;//申明该类

class Maze//定义迷宫节点信息。
{
public:
	int i;
	int j;
	int state;
};

class MazeMat
{
	Maze matrix[M][N];//迷宫矩阵
	vector<Maze> EntryPath;//从初始点到入口的路径
	vector<Maze> ExitPath;//从初始点到出口的路径
	vector<Maze> FinalPath;//从入口到出口的路径
	MazeStack *mazeStack;//定义栈

public:
	void initMaze();//初始化迷宫矩阵
	void createMaze();//产生迷宫矩阵
	void displayMaze();//显示迷宫矩阵
	void FindWay();//寻找入口到出口的路径
};
//////////////////

2、Maze.cpp

#include"MazeStack.h"
using namespace std;

void MazeMat::initMaze()//初始化迷宫矩阵
{
	for(int i=0;i<M;i++)
		for(int j=0;j<N;j++)
		{
			matrix[i][j].i=i;
			matrix[i][j].j=j;
			matrix[i][j].state=0;//初始化迷宫矩阵元素为0,即全为墙
		}

		mazeStack=new MazeStack();

		EntryPath.clear();//初始化各个路径
		ExitPath.clear();
		FinalPath.clear();
}

void MazeMat::createMaze()//产生迷宫矩阵,中间也记录了从初始点到入口、出口的路径
{

	int i=4;//初始点设定,注意i,j必须为偶数
	int j=4;
	bool Left=false;//初始化四个方向,false代表可以朝这个方向搜索
	bool Right=false;
	bool Up=false;
	bool Down=false;

	matrix[i][j].state=1;//设置初始点是空的,即不是墙
	srand((int)time(0));//产生随机数种子,使得每次运行情况不同
	Maze temp;

	temp.i=i;
	temp.j=j;
	temp.state=0;
	int count1=0;
	int num1=0;

	mazeStack->Push(temp);//将初始点进栈

	while(1)//不断循环搜索可行方向,形成迷宫
	{

		temp.i=i;
		temp.j=j;
		int randNum=0;

		randNum=rand()%4;//0,1,2,3

		//我们假设迷宫矩阵的第一个元素(0,0)为入口,最后一个元素(M-1,N-2)为出口
		if(temp.i==0&&temp.j==0)
		{
			EntryPath.clear();
		  while(mazeStack->isEmpty() == false)
		  {

			 EntryPath.push_back(mazeStack->GetTop());//获得从初始点到入口的路径
			 mazeStack->Pop();

		  }
		  for(int ii=EntryPath.size()-1;ii>=0;ii--)
		  {
			  mazeStack->Push(EntryPath[ii]);//还原栈
		  }
		}

		if(temp.i==M-1&&temp.j==N-1)
		{
			ExitPath.clear();
		  while(mazeStack->isEmpty() == false)
		  {

			 ExitPath.push_back(mazeStack->GetTop());//获得从初始点到出口的路径
			 mazeStack->Pop();

		  }
		  for(int i=ExitPath.size()-1;i>=0;i--)
		  {
			  mazeStack->Push(ExitPath[i]);//还原栈
		  }
		}

		switch(randNum)
		{

		case 0://向上搜索
			if(Up==false&&i>1&&matrix[i-2][j].state!=1)
			{
				mazeStack->Push(temp);
				matrix[i-1][j].state=1;
				matrix[i-2][j].state=1;

				i=i-2;
				Left=false;
				Right=false;
				Up=false;
				Down=false;
			}
			else
				Up=true;
			break;
	    case 1://向下搜索
			if(Down==false&&i<M-2&&matrix[i+2][j].state!=1)
			{
				mazeStack->Push(temp);
				matrix[i+1][j].state=1;
				matrix[i+2][j].state=1;

				i=i+2;
				Left=false;
				Right=false;
				Up=false;
				Down=false;
			}
			else
				Down=true;
			break;
		 case 2://向左搜索
			 if(Left==false&&j>1&&matrix[i][j-2].state!=1)
			{
				mazeStack->Push(temp);
				matrix[i][j-1].state=1;
				matrix[i][j-2].state=1;

				j=j-2;
				Left=false;
				Right=false;
				Up=false;
				Down=false;
			}
			else
				Left=true;
			break;
		 case 3://向右搜索
			 if(Right==false&&j<N-2&&matrix[i][j+2].state!=1)
			{
				mazeStack->Push(temp);
				matrix[i][j+1].state=1;
				matrix[i][j+2].state=1;

				j=j+2;
				Left=false;
				Right=false;
				Up=false;
				Down=false;
			}
			else
				Right=true;
			break;
		}//end switch

	    if(Left&&Right&&Up&&Down)   //当上下左右都不可行时,进行回溯
		  {
			  if(mazeStack->isEmpty()) //回溯完毕,生成迷宫
			   {
					return ;
			   }
			   else    //进行出栈操作
			   {
				    i = mazeStack->GetTop().i;
					j = mazeStack->GetTop().j;
					mazeStack->Pop();

					Left=false;
					Right=false;
					Up=false;
					Down=false;
			   }  

		  }   

	}//end while

}

void MazeMat::displayMaze()//显示迷宫
{

	 matrix[0][0].state = matrix[M-1][N-1].state = 2;//2表示入口和出口
	 for(int i=0;i<FinalPath.size();i++)
	 {
		 matrix[FinalPath.at(i).i][FinalPath.at(i).j].state=3;//3表示可达路径点
	 }
	 cout<<"左上角为入口,右下角为出口,oo代表可达路径."<<endl;
	 for(int k=0;k<N+2;k++)//在迷宫矩阵的外围墙
		 cout<<"■";
	 cout<<endl;
	 for (int i = 0; i < M; i++)
	 {
		  cout<<"■";
		  for (int j = 0; j <N; j++)
		  {
			  switch ( matrix[i][j].state )
				{
				   case 0:cout<<"■";break;// 显示墙
				   case 1:cout<<"  ";break;//显示空
				   case 2:cout<<"↘";break;//显示入口和出口
				   case 3:cout<<"oo";break;//显示可达路径
				}
		  }
		  cout<<"■";
		  cout<<endl;
	 }
	  for(int k=0;k<N+2;k++)
		 cout<<"■";
	 cout<<endl;
}

void MazeMat::FindWay()//寻找可达路径
{
	FinalPath.clear();//清零
	int i=0,j=0;

	for(i=EntryPath.size()-1,j=ExitPath.size()-1;i>=0&&j>=0;i--,j--)
	{
		if(EntryPath.at(i).i!=ExitPath.at(j).i||EntryPath.at(i).j!=ExitPath.at(j).j)
		{
			break;
		}
	}

	if(i<0)//初始点到出口的路径中经过入口
	{
		for(int k=ExitPath.size()-EntryPath.size()-1;k>=0;k--)
		{
			FinalPath.push_back(ExitPath.at(k));
		}

	}

	else if(j<0)//初始点到入口的路径中经过出口
	{
		for(int k=EntryPath.size()-ExitPath.size()-1;k>=0;k--)
		{
			FinalPath.push_back(EntryPath.at(k));
		}
	}

	else//初始点到入口、出口的路径有部分重叠或则没有重叠
	{
		for(int k=0;k<=i+1;k++)
		{
			FinalPath.push_back(EntryPath.at(k));
		}

		for(int k=j;k>=0;k--)
		{
			FinalPath.push_back(ExitPath.at(k));
		}
	}

}

3、MazeStack.h

#include"Maze.h"
typedef Maze ElementType;
//这里是栈的定义
typedef struct node
{
    ElementType data;
    struct node *next;
}Node;

class MazeStack
{
public:
	MazeStack():bottom(NULL),top(NULL),Size(NULL){}
	~MazeStack(){}

	bool isEmpty();
	bool Push(ElementType e);
	ElementType GetTop();
	ElementType Pop();

private:
	Node *bottom;
	Node *top;
	int Size;
};

4、MazeStack.cpp

#include"MazeStack.h"

bool MazeStack::isEmpty()//判断栈是否为空
{
	if(top==bottom)
		return true;
	return false;
}

bool MazeStack::Push(Maze m)//进栈
{
	Node *temp;
	temp=top;
	top=new Node();
	if(!top)
		return false;
	top->data=m;
	top->next=temp;
	Size++;
	return true;
}

Maze MazeStack::Pop()//出栈
{
	Node temp;
	temp.data=top->data;
	temp.next=top->next;
	delete top;
	top=temp.next;
	Size--;
	return temp.data;
}

Maze MazeStack::GetTop()//取栈顶元素
{
	return top->data;
}

5、main.cpp

#include"MazeStack.h"

void main()
{
	MazeMat matrix;
	matrix.initMaze();
	matrix.createMaze();

	matrix.FindWay();
	matrix.displayMaze();
}

具体的程序截图如下:

1、9行9列的迷宫:

2、19行19列的迷宫:

3、29行29列的迷宫:

2维到3维的转化

       上面的程序实现是在二维平面上用控制台通过c++实现的,显然不够生动形象。于是我用Qt5+opengl实现了3d效果,并且可以通过鼠标操作。之所以选择Qt是因为它也是用c++编程的,所以前面写的程序几乎不用改动就可以直接运行。
编程思想:
1、首先是利用前面的程序生成迷宫矩阵matrix。
2、利用迷宫矩阵信息生成三维的图像
3、利用视角改变函数gluLookat不断的来改变视角,从而模拟走迷宫的场景
使用指南:
1、上下键控制前进、后退
2、左右键控制左转、右转
3、开始时,处于俯视图状态,可以看清地图的全貌以及自己在地图的位置(黄色)。
4、按下I键进入游戏模式,即可进行走迷宫,按下O键退出游戏模式,进入俯视图模式查看信息。
5、按p键,可以显示从入口到出口的可达路径(绿色)
6、分别用红色、绿色表示入口、出口

具体的显示效果如下:
1、初始情况(俯视图):


2、俯视图下显示可达路径:


3、游戏模式中:


4、游戏模式中显示可达路径:


5、游戏模式转到俯视图查看当前位置:


6、到达出口:


3D效果的不足之处:由于采用纹理轮廓不明显,导致转角处显示不明显,移动的步幅有点大,未经多次测试,可能存在bug。
由于篇幅有限,就不在此粘贴代码,具体源代码和可执行程序见下面链接:

http://download.csdn.net/detail/tengweitw/8154195

原文:http://blog.csdn.net/tengweitw/article/details/40213317

作者:nineheadedbird

【Qt编程】3D迷宫游戏的更多相关文章

  1. 用webgl打造自己的3D迷宫游戏

    用webgl打造自己的3D迷宫游戏 2016/09/19 · JavaScript · WebGL 原文出处: AlloyTeam    背景:前段时间自己居然迷路了,有感而发就想到写一个可以让人迷路 ...

  2. 【Qt编程】基于Qt的词典开发系列--后序

    从去年八月份到现在,总算完成了词典的编写以及相关技术文档的编辑工作.从整个过程来说,文档的编写比程序的实现耗费的时间更多.基于Qt的词典开发系列文章,大致包含了在编写词典软件过程中遇到的技术重点与难点 ...

  3. Qt编程学习网站

    http://blog.csdn.net/k122769836/article/details/8637677 QT - little_su - 博客频道 - CSDN.NET Qt - 1+1=2 ...

  4. 3D单机游戏《天鹰教》源码发布(二)

    3D单机游戏<天鹰教>源码发布 作者 作者: 游蓝海 博客: http://blog.csdn.net/you_lan_hai mail:     you_lan_hai@foxmail. ...

  5. POJ 2251 Dungeon Master(3D迷宫 bfs)

    传送门 Dungeon Master Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 28416   Accepted: 11 ...

  6. c语言迷宫游戏的实现

    // // main.c // 迷宫游戏代码实现 // #include <stdio.h> #define ROW 6 //宏定义行 #define COL 6 //宏定义列 /** * ...

  7. 51nod 1459 迷宫游戏(dij)

    题目链接:51nod 1459 迷宫游戏 dij裸题. #include<cstdio> #include<cstring> #include<algorithm> ...

  8. qt编程入门

    面对qt编程,必须先知道qt中常用的类: QPushButton按钮类.QLabel标签类.QMessageBox对话框类.QCheckBox.QAction.QMenu.QStatusBar.QTo ...

  9. 3D跑酷游戏《月影忍者之疾风狂逃》

    <月影忍者之疾风狂逃>是一款3D跑酷游戏,也是我实习的时候参与的一个项目,在那个公司我学到了很多东西,谢谢他们.大家可以去玩玩这个游戏啊,还是不错的哦.

随机推荐

  1. Linux Debugging (九) 一次生产环境下的“内存泄露”

    一个偶然的机会,发现一个进程使用了超过14G的内存.这个进程是一个RPC server,只是作为中转,绝对不应该使用这么多内存的.即使并发量太多,存在内存中的数据太多,那么在并发减少的情况下,这个内存 ...

  2. 菜鸟学习物联网---辨析基于Andriod 5.1,Linux,Windows10开发Dragon Board 410c板

    点击打开链接 诸位亲最近怎么样?刚过完年上班是不是很不情愿?自古做事者,不唯有坚韧不拔之志,亦或有超世之才.所以,诸位好好加油.今天小编想给大家系统性总结一下Dragon Board 410c板基于A ...

  3. 参数估计:最大似然估计MLE

    http://blog.csdn.net/pipisorry/article/details/51461997 最大似然估计MLE 顾名思义,当然是要找到一个参数,使得L最大,为什么要使得它最大呢,因 ...

  4. Android软件设置自动检查更新

    如果让我推荐功能强大的第三方集成开发包,我一定会推荐友盟,有着强大的软件统计,分析功能(原谅我,我不是打广告). 这一篇介绍友盟的自动更新功能,但是首先你得拥有友盟. 友盟的集成步骤 1.1 导入SD ...

  5. 运用 三种 原生 谷歌 阿里 解析和生成json

    三种类生成JSON数据方法 JSON(原生): 第一种 JSONStringer和JSONObject区别在于添加对象时是按顺序添加的比如说 JSONStringer 添加 a:1 b:2 c:3那么 ...

  6. [GitHub]第四讲:合并分支

    本地两个分支合并 先从最简单的一种情况着手.现在项目只有一个 master 分支,我来新建一个 idea 分支,实现自己的想法,commit 一下.那现在仓库内的情况就是这样的 这个是前面已经见过的情 ...

  7. Mysql大量插入数据时SQL语句的优化

    1) 对于Myisam类型的表,可以通过以下方式快速的导入大量的数据.     ALTER TABLE tblname DISABLE KEYS;    loading the data    ALT ...

  8. HMM:隐马尔可夫模型HMM

    http://blog.csdn.net/pipisorry/article/details/50722178 隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模 ...

  9. 竞价拍卖理论的介绍(RTB模型中使用第二竞价模型,为的是纳什平衡,保护所有多方利益)

    英式拍卖 是最普通的拍卖方式,其形式是拍卖过程中,竞价按阶梯,从低到高,依次递增.最终由出价最高者获得拍卖物品(竞买人变成买受人). The first price auction: a form o ...

  10. Ubuntu14.04安装配置星际译王词典

    参考自:http://m.blog.csdn.net/blog/u014731529/25917149 平常总会遇到一些不认识的单词,汉字等等.一直使用Chrome 浏览器的翻译插件,不过插件的翻译总 ...