学习TensorFlow,生成tensorflow输入输出的图像格式
TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow;也可以通过自带函数(tf.read)读取,当图像文件过多时,一般使用pipeline通过队列的方法进行读取。下面我们介绍两种生成tensorflow的图像格式的方法,供给tensorflow的graph的输入与输出。
1
import cv2
import numpy as np
import h5py
height = 460
width = 345
with h5py.File('make3d_dataset_f460.mat','r') as f:
images = f['images'][:]
image_num = len(images)
data = np.zeros((image_num, height, width, 3), np.uint8)
data = images.transpose((0,3,2,1))
先生成图像文件的路径:ls *.jpg> list.txt
import cv2 import numpy as np image_path = './' list_file = 'list.txt' height = 48 width = 48 image_name_list = [] # read image with open(image_path + list_file) as fid: image_name_list = [x.strip() for x in fid.readlines()] image_num = len(image_name_list) data = np.zeros((image_num, height, width, 3), np.uint8) for idx in range(image_num): img = cv2.imread(image_name_list[idx]) img = cv2.resize(img, (height, width)) data[idx, :, :, :] = img
2 Tensorflow自带函数读取
def get_image(image_path):
"""Reads the jpg image from image_path.
Returns the image as a tf.float32 tensor
Args:
image_path: tf.string tensor
Reuturn:
the decoded jpeg image casted to float32
"""
return tf.image.convert_image_dtype(
tf.image.decode_jpeg(
tf.read_file(image_path), channels=3),
dtype=tf.uint8)
pipeline读取方法
# Example on how to use the tensorflow input pipelines. The explanation can be found here ischlag.github.io.
import tensorflow as tf
import random
from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes
dataset_path = "/path/to/your/dataset/mnist/"
test_labels_file = "test-labels.csv"
train_labels_file = "train-labels.csv"
test_set_size = 5
IMAGE_HEIGHT = 28
IMAGE_WIDTH = 28
NUM_CHANNELS = 3
BATCH_SIZE = 5
def encode_label(label):
return int(label)
def read_label_file(file):
f = open(file, "r")
filepaths = []
labels = []
for line in f:
filepath, label = line.split(",")
filepaths.append(filepath)
labels.append(encode_label(label))
return filepaths, labels
# reading labels and file path
train_filepaths, train_labels = read_label_file(dataset_path + train_labels_file)
test_filepaths, test_labels = read_label_file(dataset_path + test_labels_file)
# transform relative path into full path
train_filepaths = [ dataset_path + fp for fp in train_filepaths]
test_filepaths = [ dataset_path + fp for fp in test_filepaths]
# for this example we will create or own test partition
all_filepaths = train_filepaths + test_filepaths
all_labels = train_labels + test_labels
all_filepaths = all_filepaths[:20]
all_labels = all_labels[:20]
# convert string into tensors
all_images = ops.convert_to_tensor(all_filepaths, dtype=dtypes.string)
all_labels = ops.convert_to_tensor(all_labels, dtype=dtypes.int32)
# create a partition vector
partitions = [0] * len(all_filepaths)
partitions[:test_set_size] = [1] * test_set_size
random.shuffle(partitions)
# partition our data into a test and train set according to our partition vector
train_images, test_images = tf.dynamic_partition(all_images, partitions, 2)
train_labels, test_labels = tf.dynamic_partition(all_labels, partitions, 2)
# create input queues
train_input_queue = tf.train.slice_input_producer(
[train_images, train_labels],
shuffle=False)
test_input_queue = tf.train.slice_input_producer(
[test_images, test_labels],
shuffle=False)
# process path and string tensor into an image and a label
file_content = tf.read_file(train_input_queue[0])
train_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS)
train_label = train_input_queue[1]
file_content = tf.read_file(test_input_queue[0])
test_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS)
test_label = test_input_queue[1]
# define tensor shape
train_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS])
test_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS])
# collect batches of images before processing
train_image_batch, train_label_batch = tf.train.batch(
[train_image, train_label],
batch_size=BATCH_SIZE
#,num_threads=1
)
test_image_batch, test_label_batch = tf.train.batch(
[test_image, test_label],
batch_size=BATCH_SIZE
#,num_threads=1
)
print "input pipeline ready"
with tf.Session() as sess:
# initialize the variables
sess.run(tf.initialize_all_variables())
# initialize the queue threads to start to shovel data
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
print "from the train set:"
for i in range(20):
print sess.run(train_label_batch)
print "from the test set:"
for i in range(10):
print sess.run(test_label_batch)
# stop our queue threads and properly close the session
coord.request_stop()
coord.join(threads)
sess.close()
参考资料
[1] http://ischlag.github.io/2016/06/19/tensorflow-input-pipeline-example/
[2] https://indico.io/blog/tensorflow-data-inputs-part1-placeholders-protobufs-queues/
学习TensorFlow,生成tensorflow输入输出的图像格式的更多相关文章
- 深度学习利器:TensorFlow在智能终端中的应用——智能边缘计算,云端生成模型给移动端下载,然后用该模型进行预测
前言 深度学习在图像处理.语音识别.自然语言处理领域的应用取得了巨大成功,但是它通常在功能强大的服务器端进行运算.如果智能手机通过网络远程连接服务器,也可以利用深度学习技术,但这样可能会很慢,而且只有 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- 【学习笔记】tensorflow基础
目录 认识Tensorflow Tensorflow特点 下载以及安装 Tensorflow初体验 Tensorflow进阶 图 op 会话 Feed操作 张量 变量 可视化学习Tensorboard ...
- 3. Tensorflow生成TFRecord
1. Tensorflow高效流水线Pipeline 2. Tensorflow的数据处理中的Dataset和Iterator 3. Tensorflow生成TFRecord 4. Tensorflo ...
- 【tensorflow】tensorflow学习记录——安装、第一个程序篇
机器学习,人工智能往后肯定是一个趋势,现阶段有必要研究一两个人工智能的工具,以免自己技术落伍,其中tensorflow就是一个很不错的项目,有谷歌开发后开源,下面开始学习安装和使用 安装篇: 很不幸, ...
- 深度学习利器: TensorFlow系统架构及高性能程序设计
2015年11月9日谷歌开源了人工智能平台TensorFlow,同时成为2015年最受关注的开源项目之一.经历了从v0.1到v0.12的12个版本迭代后,谷歌于2017年2月15日发布了TensorF ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
- 21个项目玩转深度学习:基于TensorFlow的实践详解02—CIFAR10图像识别
cifar10数据集 CIFAR-10 是由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集.一共包含 10 个类别的 ...
- 【学习笔记】tensorflow图片读取
目录 图像基本概念 图像基本操作 图像基本操作API 图像读取API 狗图片读取 CIFAR-10二进制数据读取 TFRecords TFRecords存储 TFRecords读取方法 图像基本概念 ...
随机推荐
- 浅谈java中内置的观察者模式与动态代理的实现
一.关于观察者模式 1.将观察者与被观察者分离开来,当被观察者发生变化时,将通知所有观察者,观察者会根据这些变化做出对应的处理. 2.jdk里已经提供对应的Observer接口(观察者接口)与Obse ...
- PTA 邻接表存储图的广度优先遍历(20 分)
6-2 邻接表存储图的广度优先遍历(20 分) 试实现邻接表存储图的广度优先遍历. 函数接口定义: void BFS ( LGraph Graph, Vertex S, void (*Visit)(V ...
- JavaScript反调试技巧
一.函数重定义 这是一种最基本也是最常用的代码反调试技术了.在JavaScript中,我们可以对用于收集信息的函数进行重定义.比如说,console.log()函数可以用来收集函数和变量等信息,并将其 ...
- day04 Java Web 开发入门
day04 Java Web 开发入门 1. web 开发相关介绍 2. web 服务器 3. Tomcat服务器启动的问题 4. Tomcat目录结构 5. Web应用程序(虚拟目录映射,缺省web ...
- 02 基础设施/Gitlab - DevOps之路
基础设施/Gitlab - DevOps之路 文章Github地址,欢迎start:https://github.com/li-keli/DevOps-WiKi 源代码管理器选用Gitlab,新版(2 ...
- ActiveMQ消息传递的两种方式
1.什么是ActiveMQ? ActiveMQ是apache提供的开源的,实现消息传递的一个中间插件,可以和spring整合,是目前最流行的开源消息总线,ActiveMQ是一个完全支持JMS1.1和J ...
- CODEVS3269混合背包+二进制优化
codevs 3296 http://codevs.cn/problem/3269/ 题目描述 Description 背包体积为V ,给出N个物品,每个物品占用体积为Vi,价值为Wi,每个物品要么至 ...
- 利用百度接口进行人脸识别并保存人脸jpg文件
利用百度接口进行人脸识别,根据返回的人脸location用opencv切割保存. # coding : UTF-8 from aip import AipFace import cv2 import ...
- 实验与作业(Python)-05 程序的控制结构
推荐完成顺序: 1->2->3->4.1->4.4->5->4.5->4.7->6 截止日期 下次实验课之前 实验目标 if-elif-else 循环: ...
- java异常拾遗
概述 当方法内部发生一项错误时,该方法会创建一个对象传递给运行时系统(runtime system),这个对象被称为异常对象,包含错误的类型.发生位置,程序状态等一系列信息. 当一个方法抛出异常时,运 ...