学习sklearn和kagggle时遇到的问题,什么是独热编码?为什么要用独热编码?什么情况下可以用独热编码?以及和其他几种编码方式的区别。

首先了解机器学习中的特征类别:连续型特征离散型特征

拿到获取的原始特征,必须对每一特征分别进行归一化,比如,特征A的取值范围是[-1000,1000],特征B的取值范围是[-1,1].如果使用logistic回归,w1*x1+w2*x2,因为x1的取值太大了,所以x2基本起不了作用。所以,必须进行特征的归一化,每个特征都单独进行归一化。

对于连续性特征:

  • Rescale bounded continuous features: All continuous input that are bounded, rescale them to [-1, 1] through x = (2x - max - min)/(max - min).    线性放缩到[-1,1]
  • Standardize all continuous features: All continuous input should be standardized and by this I mean, for every continuous feature, compute its mean (u) and standard deviation (s) and do x = (x - u)/s.       放缩到均值为0,方差为1

对于离散性特征:

  • Binarize categorical/discrete features: 对于离散的特征基本就是按照one-hot(独热)编码,该离散特征有多少取值,就用多少维来表示该特征。

一. 什么是独热编码?

独热码,在英文文献中称做 one-hot code, 直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制。举例如下:

假如有三种颜色特征:红、黄、蓝。 在利用机器学习的算法时一般需要进行向量化或者数字化。那么你可能想令 红=1,黄=2,蓝=3. 那么这样其实实现了标签编码,即给不同类别以标签。然而这意味着机器可能会学习到“红<黄<蓝”,但这并不是我们的让机器学习的本意,只是想让机器区分它们,并无大小比较之意。所以这时标签编码是不够的,需要进一步转换。因为有三种颜色状态,所以就有3个比特。即红色:1 0 0 ,黄色: 0 1 0,蓝色:0 0 1 。如此一来每两个向量之间的距离都是根号2,在向量空间距离都相等,所以这样不会出现偏序性,基本不会影响基于向量空间度量算法的效果。

自然状态码为:000,001,010,011,100,101

独热编码为:000001,000010,000100,001000,010000,100000

来一个sklearn的例子:

from sklearn import preprocessing
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) # fit来学习编码
enc.transform([[0, 1, 3]]).toarray() # 进行编码

输出:array([[ 1.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.]])

数据矩阵是4*3,即4个数据,3个特征维度。

0 0 3                      观察左边的数据矩阵,第一列为第一个特征维度,有两种取值0\1. 所以对应编码方式为10 、01

1 1 0                                               同理,第二列为第二个特征维度,有三种取值0\1\2,所以对应编码方式为100、010、001

0 2 1                                               同理,第三列为第三个特征维度,有四中取值0\1\2\3,所以对应编码方式为1000、0100、0010、0001

1 0 2

再来看要进行编码的参数[0 , 1,  3], 0作为第一个特征编码为10,  1作为第二个特征编码为010, 3作为第三个特征编码为0001.  故此编码结果为 1 0 0 1 0 0 0 0 1

二. 为什么要独热编码?

正如上文所言,独热编码(哑变量 dummy variable)是因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到圆点是等距的。使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。

为什么特征向量要映射到欧式空间?

将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

三 .独热编码优缺点

  • 优点:独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。
  • 缺点:当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。

四. 什么情况下(不)用独热编码?

  • 用:独热编码用来解决类别型数据的离散值问题,
  • 不用:将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。 有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。  Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度

总的来说,要是one hot encoding的类别数目不太多,建议优先考虑。

五.  什么情况下(不)需要归一化?

  • 需要: 基于参数的模型或基于距离的模型,都是要进行特征的归一化。
  • 不需要:基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。

六.  标签编码LabelEncoder

作用: 利用LabelEncoder() 将转换成连续的数值型变量。即是对不连续的数字或者文本进行编号例如:

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit([1,5,67,100])
le.transform([1,1,100,67,5])

输出: array([0,0,3,2,1])

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo'] # 三个类别分别为0 1 2
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1]...)
>>> list(le.inverse_transform([2, 2, 1])) # 逆过程
['tokyo', 'tokyo', 'paris']

限制:上文颜色的例子已经提到标签编码了。Label encoding在某些情况下很有用,但是场景限制很多。再举一例:比如有[dog,cat,dog,mouse,cat],我们把其转换为[1,2,1,3,2]。这里就产生了一个奇怪的现象:dog和mouse的平均值是cat。所以目前还没有发现标签编码的广泛使用。

附:基本的机器学习过程

参考:

Quora:What are good ways to handle discrete and continuous inputs together?

数据预处理:独热编码(One-Hot Encoding)

使用sklearn优雅地进行数据挖掘

数据挖掘比赛通用框架

Label Encoding vs One Hot Encoding

[scikit-learn] 特征二值化编码函数的一些坑

OneHotEncoder独热编码和 LabelEncoder标签编码的更多相关文章

  1. 数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码

    一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one- ...

  2. JSP页面的Page指令指定编码和Meta标签编码

    JSP代码如下: <%@ page language="java" contentType="text/html; charset=UTF-8" page ...

  3. 独热编码OneHotEncoder简介

    在分类和聚类运算中我们经常计算两个个体之间的距离,对于连续的数字(Numric)这一点不成问题,但是对于名词性(Norminal)的类别,计算距离很难.即使将类别与数字对应,例如{'A','B','C ...

  4. One-Hot独热编码

    One-Hot独热编码 Dummy Encoding VS One-Hot Encoding二者都可以对Categorical Variable做处理,定性特征转换为定量特征,转换为定量特征其实就是将 ...

  5. Scikit-learn库中的数据预处理:独热编码(二)

    在上一篇博客中介绍了数值型数据的预处理但是真实世界的数据集通常都含有分类型变量(categorical value)的特征.当我们讨论分类型数据时,我们不区分其取值是否有序.比如T恤尺寸是有序的,因为 ...

  6. 数据预处理之独热编码(One-Hot):为什么要使用one-hot编码?

    一.问题由来 最近在做ctr预估的实验时,还没思考过为何数据处理的时候要先进行one-hot编码,于是整理学习如下:  在很多机器学习任务如ctr预估任务中,特征不全是连续值,而有可能是分类值.如下: ...

  7. 【转】数据预处理之独热编码(One-Hot Encoding)

    原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...

  8. 机器学习实战:数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  9. 数据预处理:独热编码(One-Hot Encoding)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

随机推荐

  1. 知识科普:IM聊天应用是如何将消息发送给对方的?(非技术篇)

    1.引言 沟通是人类的最基本需求,复杂多变的沟通内容.沟通方式,正是人类文明之所以如此璀璨的关键所在.   在自然界中,要完成一件事情的沟通,我们可以直接通过声音传递给对方,这是再平常不过的事了(靠“ ...

  2. 宝塔面板设置腾迅COS自动备份网站

    之前写了如何配置腾迅云COS并挂载到服务器中,今天看到宝塔面板中有腾迅云COS的插件,不过研究了下,只是将COS绑定在宝塔面板中,不能自动备份,需要用到宝塔的计划任务功能 1.下载腾迅云COS插件 2 ...

  3. 从壹开始前后端分离【 .NET Core2.0 +Vue2.0 】框架之八 || API项目整体搭建 6.3 异步泛型仓储+依赖注入初探

    代码已上传Github+Gitee,文末有地址 番外:在上文中,也是遇到了大家见仁见智的评论和反对,嗯~说实话,积极性稍微受到了一丢丢的打击,不过还好,还是有很多很多很多人的赞同的,所以会一直坚持下去 ...

  4. Docker & ASP.NET Core (1):把代码连接到容器

    和这种蛋糕一样,Docker的容器和镜像也是使用类似的分层文件系统构建而成的. 这样做的好处就是可以节省硬盘空间,也利于复用等等.因为Docker基于镜像创建容器的时候,其镜像是共享的:而且镜像里面的 ...

  5. 【神经网络篇】--基于数据集cifa10的经典模型实例

    一.前述 本文分享一篇基于数据集cifa10的经典模型架构和代码. 二.代码 import tensorflow as tf import numpy as np import math import ...

  6. 【Netty】(9)---Netty编解码器

    Netty编解码器 在了解Netty编解码之前,先了解Java的编解码: 编码(Encode)称为序列化, 它将对象序列化为字节数组,用于网络传输.数据持久化或者其它用途. 解码(Decode)称为反 ...

  7. Elasticsearch Index模块

    1.  Index Setting(索引设置) 每个索引都可以设置索引级别.可选值有: static  :只能在索引创建的时候,或者在一个关闭的索引上设置 dynamic:可以动态设置 1.1.  S ...

  8. GC参考手册 —— GC 算法(实现篇)

    学习了GC算法的相关概念之后, 我们将介绍在JVM中这些算法的具体实现.首先要记住的是, 大多数JVM都需要使用两种不同的GC算法 —— 一种用来清理年轻代, 另一种用来清理老年代. 我们可以选择JV ...

  9. 『集群』004 Slithice 集群分布式(多个客户端,基于中央服务器的集群服务)

    Slithice 集群分布式(多个客户端,基于中央服务器的多个集群服务端) 案例Demo展示: 集群架构图 如下: 如上图,上图 展示了 这个集群 的 结构: >一个中央服务器(可以有多个),负 ...

  10. 版本控制工具——Git常用操作(上)

    本文由云+社区发表 作者:工程师小熊 摘要:用了很久的Git和svn,由于总是眼高手低,没能静下心来写这些程序员日常开发最常用的知识点.现在准备开一个专题,专门来总结一下版本控制工具,让我们从git开 ...