1227 平均最小公倍数

题意:求\(\frac{1}{n} \sum_{i=1}^n lcm(n,i)\)


和的弱化版?

\[ans = \frac{1}{2}((\sum_{i=1}^n \sum_{d=1}^{\lfloor \frac{n}{i} \rfloor} d\cdot \varphi(d) ) - \sum_{i=1}^n)
\]

求\(id\cdot \varphi\)的前缀和,卷上\(id\)就行了

我竟然把整除分块打错了,直接i++,gg

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1664512, U=1664510, mo=1e9+7, inv2 = 500000004, inv6 = 166666668;
inline int read(){
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} inline void mod(int &x) {if(x>=mo) x-=mo; else if(x<0) x+=mo;}
bool notp[N]; int p[N/10], phi[N], s[N];
void sieve(int n) {
phi[1]=1; s[1]=1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, phi[i] = i-1;
for(int j=1; j <= p[0] && i*p[j] <= n; j++) {
notp[i*p[j]] = 1;
if(i%p[j] == 0) {phi[i*p[j]] = (ll) phi[i] * p[j] %mo; break;}
phi[i*p[j]] = (ll) phi[i] * (p[j]-1) %mo;
}
mod(s[i] += s[i-1] + (ll) phi[i] * i %mo);
}
} namespace ha {
const int p=1001001;
struct meow{int ne, val, r;} e[3000];
int cnt, h[p];
inline void insert(int x, int val) {
int u = x%p;
for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return;
e[++cnt] = (meow){h[u], val, x}; h[u] = cnt;
}
inline int quer(int x) {
int u = x%p;
for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return e[i].val;
return -1;
}
} using ha::insert; using ha::quer; inline ll sum(ll n) {return n * (n+1) / 2 %mo;}
inline ll sum2(ll n) {return n * (n+1) %mo * (2*n+1) %mo *inv6 %mo;}
int dj_s(int n) { //printf("dj_s %d\n", n);
if(n <= U) return s[n];
if(quer(n) != -1) return quer(n);
int ans = sum2(n), r;
for(int i=2; i<=n; i=r+1) {
r = n/(n/i);
mod(ans -= (ll) (sum(r) - sum(i-1)) * dj_s(n/i) %mo);
}
insert(n, ans);
return ans;
}
int solve(int n) {
int ans=0, r;
for(int i=1; i<=n; i=r+1) {
r = n/(n/i);
mod(ans += (ll) dj_s(n/i) * (r-i+1) %mo);
}
mod(ans += n);
return (ll) ans * inv2 %mo;
}
int l, r;
int main() {
freopen("in", "r", stdin);
sieve(U);
l=read(); r=read();
int ans = solve(r) - solve(l-1); mod(ans);
printf("%d", ans);
}

51NOD 1227 平均最小公倍数 [杜教筛]的更多相关文章

  1. 51nod 1227 平均最小公倍数【欧拉函数+杜教筛】

    以后这种题能用phi的就不要用mu-mu往往会带着个ln然后被卡常致死 把题目要求转换为前缀和相减的形式,写出来大概是要求这样一个式子: \[ \sum_{i=1}^{n}\sum_{j=1}^{i} ...

  2. 51NOD 1220 约数之和 [杜教筛]

    1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)​\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...

  3. [51Nod 1220] - 约数之和 (杜教筛)

    题面 令d(n)d(n)d(n)表示nnn的约数之和求 ∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑n​j=1∑n​d(ij) 题目分析 ...

  4. 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]

    1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...

  5. 【51nod】1238 最小公倍数之和 V3 杜教筛

    [题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...

  6. 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】

    首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...

  7. [51nod1227]平均最小公倍数(莫比乌斯反演+杜教筛)

    题意 求 $\sum_{i=a}^b \sum_{j=1}^i \frac{lcm(i,j)}{i}$. 分析 只需要求出前缀和, $$\begin{aligned}\sum_{i=1}^n \sum ...

  8. [51Nod 1238] 最小公倍数之和 (恶心杜教筛)

    题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑N​j=1∑N​lcm(i,j) 2<=N<=10102<=N ...

  9. 51Nod 1238 - 最小公倍数之和 V3(毒瘤数学+杜教筛)

    题目 戳这里 推导 ∑i=1n∑j=1nlcm(i,j)~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)   ∑i=1n​∑j=1n​lcm(i,j) =∑i=1n∑j= ...

随机推荐

  1. Prim最小生成树板子

    普里姆算法可以称为"加点法",每次迭代选择代价最小的边对应的点,加入到最小生成树中.算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点. 邻接矩阵存图  时间复杂度O(n^2 ...

  2. int ,long long等范围

    unsigned   int   0-4294967295   int   -2147483648-2147483647 unsigned long 0-4294967295long   -21474 ...

  3. 解决vi编辑器不能使用方向键和退格键问题的两种方法

    方法1.使用vi命令时,不能正常编辑文件,使用方向键时老是出现很多字母? 在Ubuntu中,进入vi命令的编辑模式,发现按方向键不能移动光标,而是会输出ABCD,以及退格键也不能正常删除字符.这是由于 ...

  4. ASP.NET没有魔法——ASP.NET MVC路由

    之前的文章中介绍了My Blog文章维护功能的开发,开发过程中使用Area的方法建立了用于维护文章的Controller.View和Model.但是无论代码怎么变对于浏览器来说都是通过一个url地址去 ...

  5. UE4 Xml读写

    UE4自带一个XmlParser,可以很方便的实现Xml的读写. 1,在PublicDependencyModuleNames.AddRange中添加XmlParser. 2,include XmlP ...

  6. .25-浅析webpack源码之事件流compilation(3)

    这一节跑下一批plugin. compiler.apply( new EnsureChunkConditionsPlugin(), new RemoveParentModulesPlugin(), n ...

  7. 解Linux SSH命令大全,新手必看SSH命令

    下面介绍一些基本的常用的Linux SSH命令,都是一些很简单的Linux SSH命令,新手掌握了这几个,一般管理一般的vps或者linux主机就可以了!     我们的教程介绍了putty的使用方法 ...

  8. 数据库复习总结(2)-SQLServer的管理

    1.需要安装SQLServer2008或者SQLServer2012,若要使用SQLServer管理工具进行开发还要安装SQL Server Management Studio,还可以使用Visual ...

  9. 谁能教我iCloud怎么用?

    iCloud是苹果公司所提供的云端服务,使用者可以免费储存5GB的资料.你已经开始使用IOS5,并且你很兴奋的着手于将它同步至云服务层.以下就是怎样让你的设备更新至云服务层的非常简单的步骤.在你的iO ...

  10. PhoneGap安装手顺

    http://docs.phonegap.com/getting-started/1-install-phonegap/desktop/