题链:

https://www.luogu.org/problemnew/show/P3348

题解:

LCT,神题
首先有这么一个结论:
每次的1操作(改变生长点操作),一定只会会对连续的一段区间产生影响。
(即不存在对两段不相连的区间都进行了该操作的情况,令这种情况为[2])
简单来说就是因为该操作需要对应的那些树存在那个节点。
如果发生了情况[2],即表明区间[l1,r1],[l2,r2]有节点x,且[l1+1,r2-1]无节点x,且r2-1>=l1+1
但是我们的生长操作0操作每次进行的区间都是连续的,且每次产生的节点的编号都不同,
所以不会存在"区间[l1,r1],[l2,r2]有节点x,且[l1+1,r2-1]无节点x,且r2-1>=l1+1"这种情况
也就不会有情况[2]了。

所以,我们可以记录下来每种节点x的在哪段区间里L[x],R[x]。
然后对于一个1操作(1,l,r,x),我们就可以得到其真正会影响的那段连续区间[max(l,L[x]),min(r,R[x])]
再强调一下,对于计算出来的区间[max(l,L[x]),min(r,R[x])],该操作是一定会影响到的,同时也只会影响到该区间。

然后再看看由于询问保证一定给出的点存在,
所以既然我们都已经得到了1操作会真正影响的区间,那么对于所有的0操作(生长操作),
我们就可以忽略掉其给出的区间限制,而让整个[1,N]的区间都执行这个操作。
这样并不会影响答案。
(因为询问不会问到这个点,1操作也因为已经算出了其确切会影响的区间)。

由于树很多,不能同时维护这么多颗树,我们考虑离线,并用LCT维护
把所有操作和询问按其影响的区间的端点挂在对应的位置上,
依次维护每一颗树,并回答关于该树的问题。
同样由于询问保证一定给出的点存在,所以我们把询问放在最后来做。(即把当前树的形态维护好后,再回答所有询问)
然后是如何维护树的形态,
1.对于一个每一个1操作(1,l,r,x),我们都新建一个虚节点,权值为0,
初始时该点先连在上一个虚节点上,之后所有的点都连在这个新的虚节点上面。
然后当到了第[max(l,L[x])颗树时,就让它连着它下面那一包东西,
先和它的父亲断开,再整体连到x对应的节点上去,实现了把之后的节点长在x上操作。
然后当到了第min(r,R[x])]+1颗树时,就让该虚点又连着它下面的那一包东西,回到之前的位置上去,实现了该操作没有影响的区间,生长节点不动这个操作。
2.对于一个0操作,因为我们让它对全区间生效,
所以只要遇到0操作,就把该操作对应的权值为1的节点link到上一个虚节点,以便之后随着虚节点被一起打包着走。
3.对于2操作,现在需要询问了,由于该树的形态已经维护好,所以直接找到两个点lca并回答即可。

(思路太妙啊,我都不知道下次遇到类似的题目能不能想出这种解法。2333)

代码:

#include<bits/stdc++.h>
#define MAXN 400005
using namespace std;
struct LCT{
int lnt;
int ch[MAXN][2],size[MAXN],val[MAXN],fa[MAXN];
LCT(){lnt=1;}
bool Who(int x){return ch[fa[x]][0]!=x;}
bool Isroot(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;}
int Newnode(int v){
fa[lnt]=ch[lnt][0]=ch[lnt][1]=0;
size[lnt]=val[lnt]=v;
return lnt++;
}
void Pushup(int x){
size[x]=val[x];
if(ch[x][0]) size[x]+=size[ch[x][0]];
if(ch[x][1]) size[x]+=size[ch[x][1]];
}
void Rotate(int x){
static int y,z,l1,l2;
y=fa[x]; z=fa[y];
l1=Who(x); l2=Who(y); fa[x]=z;
if(!Isroot(y)) ch[z][l2]=x;
fa[ch[x][l1^1]]=y; fa[y]=x;
ch[y][l1]=ch[x][l1^1]; ch[x][l1^1]=y;
Pushup(y);
}
void Splay(int x){
static int y;
for(;y=fa[x],!Isroot(x);Rotate(x))
if(!Isroot(y)) Rotate(Who(y)==Who(x)?y:x);
Pushup(x);
}
int Access(int x){
static int y;
for(y=0;x;y=x,x=fa[x])
Splay(x),ch[x][1]=y,Pushup(x);
return y;
}
int Findlca(int x,int y){
Access(x); return Access(y);
}
void Link(int x,int y){
//Splay(y); It's not neccessary to do the Splay operation.
fa[x]=y;
}
void Cut(int x){
Access(x); Splay(x);
fa[ch[x][0]]=0; ch[x][0]=0; Pushup(x);
}
}DT;
struct Cmd{
int pos,odr,from,to;
Cmd(){}
Cmd(int _a,int _b,int _c,int _d):pos(_a),odr(_b),from(_c),to(_d){}
bool operator < (const Cmd &rtm) const{
return pos<rtm.pos||(pos==rtm.pos&&odr<rtm.odr);
}
}Q[MAXN];
int id[MAXN],L[MAXN],R[MAXN],ANS[MAXN];
int N,M,unreal,dnt=1,cnt=1;
int main(){
ios::sync_with_stdio(0);
cin>>N>>M;
L[dnt]=1; R[dnt]=N;
id[dnt++]=DT.Newnode(1);
unreal=DT.Newnode(0);
DT.Link(unreal,id[1]);
for(int i=1,t,l,r,x,tmp;i<=M;i++){
cin>>t;
switch(t){
case 0:
cin>>l>>r;
L[dnt]=l; R[dnt]=r;
id[dnt]=DT.Newnode(1); Q[cnt++]=Cmd(1,i-M,id[dnt],unreal);
dnt++;
//Can the real node be linked to unreal node at now instead of doing this later?
//DT.Link(id[dnt],unreal);
//After the try,I found it okay to do this.
break;
case 1:
cin>>l>>r>>x;
l=max(l,L[x]); r=min(r,R[x]);
if(l<=r){
tmp=DT.Newnode(0);
DT.Link(tmp,unreal);
Q[cnt++]=Cmd(l,i-M,tmp,id[x]);
Q[cnt++]=Cmd(r+1,i-M,tmp,unreal);
unreal=tmp;
}
break;
case 2:
cin>>x>>l>>r;
Q[cnt++]=Cmd(x,i,id[l],id[r]);
break;
}
}
sort(Q+1,Q+cnt);
memset(ANS,-1,sizeof(ANS));
for(int tree=1,i=1,x,y;i<cnt&&tree<=N;tree++){
while(Q[i].pos==tree){
x=Q[i].from; y=Q[i].to;
if(Q[i].odr>0){
int l1,l2,l3,lca;
DT.Access(x); DT.Splay(x); l1=DT.size[x];
lca=DT.Findlca(x,y); DT.Access(lca); DT.Splay(lca); l2=DT.size[lca];
DT.Access(y); DT.Splay(y); l3=DT.size[y];
ANS[Q[i].odr]=l1+l3-2*l2;
}
else DT.Cut(x),DT.Link(x,y);
i++;
}
}
for(int i=1;i<=M;i++) if(ANS[i]>=0) cout<<ANS[i]<<endl;
return 0;
}

  

●洛谷P3348 [ZJOI2016]大森林的更多相关文章

  1. 洛谷P3348 [ZJOI2016]大森林(LCT,虚点,树上差分)

    洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不 ...

  2. 洛谷P3348 [ZJOI2016]大森林 [LCT]

    传送门 刷了那么久水题之后终于有一题可以来写写博客了. 但是这题太神仙了我还没完全弄懂-- upd:写完博客之后似乎懂了. 思路 首先很容易想到\(O(n^2\log n)\)乘上\(O(\frac{ ...

  3. P3348 [ZJOI2016]大森林

    \(\color{#0066ff}{ 题目描述 }\) 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点, ...

  4. P3348 [ZJOI2016]大森林(Link-cut-tree)

    传送门 题解 题面大意: \(0.\)区间加节点 \(1.\)区间换根 \(2.\)单点询问距离 如果没有\(1\)操作,因为区间加节点都是加在下面,所以我们可以直接把\(n\)棵树压成一棵树,直接询 ...

  5. P3348 [ZJOI2016]大森林(LCT)

    Luogu3348 BZOJ4573 LOJ2092 题解 对于每个\(1\)操作建一个虚点,以后的\(0\)操作都连在最近建好的虚点上.这样每次整体嫁接的时候,直接把这个虚点断掉它原来的父亲,再\( ...

  6. 洛谷 P1230 智力大冲浪

    洛谷 P1230 智力大冲浪 题目描述 小伟报名参加中央电视台的智力大冲浪节目.本次挑战赛吸引了众多参赛者,主持人为了表彰大家的勇气,先奖励每个参赛者m元.先不要太高兴!因为这些钱还不一定都是你的?! ...

  7. BZOJ4573:[ZJOI2016]大森林——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4573 https://www.luogu.org/problemnew/show/P3348#sub ...

  8. [ZJOI2016]大森林(LCT)

    题目描述 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. 小Y掌握了一种 ...

  9. [ZJOI2016]大森林

    Description: 小Y家里有一个大森林,里面有n棵树,编号从1到n 0 l r 表示将第 l 棵树到第 r 棵树的生长节点下面长出一个子节点,子节点的标号为上一个 0 号操作叶子标号加 1(例 ...

随机推荐

  1. C语言--期末总结

    一. 1.当初你是如何做出选择计算机专业的决定的?经过一个学期,你的看法改变了么,为什么? 你觉得计算机是你喜欢的领域吗,它是你擅长的领域吗? 为什么? 答:当初报志愿的时候,没有具体的想法,只凭借着 ...

  2. Python实现栈

    栈的操作 Stack() 创建一个新的空栈 push(item) 添加一个新的元素item到栈顶 pop() 弹出栈顶元素 peek() 返回栈顶元素 is_empty() 判断栈是否为空 size( ...

  3. Swift -欢迎界面1页, 延长启动图片的显示时间(LaunchImage)

    转自:http://www.hangge.com/blog/cache/detail_1238.html http://www.hangge.com/blog/cache/detail_672.htm ...

  4. NetFPGA Demo ——reference_router_nf1_cml

    NetFPGA Demo --reference_router_nf1_cml 前言 本博文主要介绍了reference_router_nf1_cml该demo的一路运行,以及一路上艰难跑通遇到的坑. ...

  5. Flask Session 详解

    会话session ,允许你在不同请求 之间储存信息.这个对象相当于用密钥签名加密的 cookie ,即用户可以查看你的 cookie ,但是如果没有密钥就无法修改它. from flask impo ...

  6. 第四十三条:返回零长度的数组或者集合,而不是null

    如果一个方法的返回值类型是集合或者数组 ,如果在方法内部需要返回的集合或者数组是零长度的,也就是没有实际对象在里面, 我们也应该放回一个零长度的数组或者集合,而不是返回null.如果返回了null,客 ...

  7. JAVA_SE基础——69.Date类

    package cn.itcast.other; import java.text.ParseException; import java.text.SimpleDateFormat; import ...

  8. Python之旅.第二章数据类型 3.19/3.20/3.21/3.22/3.23

    一.数字类型 1.int类型: 基本使用: 用途:用于年龄,手机号,身份证号: 定义: age=18: 常用操作+内置方法: 正常的运算赋值: 进制转换: print(bin(3)); 把十进制3转换 ...

  9. node框架express

    见识到原生nodeJs服务器的恶心后,我们来用下简单好用的框架吧~ 服务器无非主要提供接口和静态文件读取,直接上代码: const express = require('express'); cons ...

  10. Angular组件——父组件调用子组件方法

    viewChild装饰器. 父组件的模版和控制器里调用子组件的API. 1.创建一个子组件child1里面只有一个greeting方法供父组件调用. import { Component, OnIni ...