栅栏(fence)
【问题描述】
小 v 家有一条栅栏,由 n 个木板顺序组成,第 i 个木板的高度是 Ai。现
在小镇上流行在栅栏上画矩形,所以小 v 也要在自家的栅栏上画。若要在区间
[x,x+k-1]这个区间画一个宽度为 k 的矩形(1≤x≤n-k+1),为了美观,高度一
定是这个区间里高度最低的木板。现在小 v 心中有 m 个理想的宽度,第 i 个为
Ki,(Ki 与 Kj 之间可能一样)。他想知道对于每个 Ki,其矩形高度的期望。
【输入格式】
第一行一个整数 n,表示木板的数目。
第二行有 n 个正整数,第 i 个数表示第 i 个木板的高度。
第三行一个整数 m,表示理想宽度的数目。
第四行有 m 个正整数,第 i 个数表示小 v 心中理想的第 i 个宽度 Ki。
【输出格式】
输出 m 行实数,第 i 行表示宽度为 Ki 的矩形高度的期望,只要你的答案和
正确答案的差的绝对值小于 1e-6,你的答案将被视为正确。
【输入样例】
3
3 2 1
4
1 2 3 1
【输出样例】
2.000000000000000
1.500000000000000
1.000000000000000
2.000000000000000
【数据范围】
对于 30%的数据,n≤20;m≤20;
对于 40%的数据,n≤2000;m≤2000;
对于 70%的数据,n≤100000;m≤100000;
对于 100%的数据,n≤1000000;m≤1000000;1≤Ai≤10 9 ;1≤Ki≤n;
输入较大,C++选手请使用读入优化。
%%%YZD大佬,考场怒切此题
本题要用到把差分数组差分和单调栈的技巧
0 x j i
|————|—————|—————|——————
假设我们维护一个单调递增的栈,当前点为i,j=q[tail],x=q[tail-1]
我们为了方便,写为[i,i]*[i,n]=s[i]
意思是以[i,i]为左端点,[i,n]为右端点的所有区间最小值为s[i]
如果h[i]<h[j],那么说明,之前我们认为的[x+1,j]*[i,n]=s[j]是错误的,我们要减去这些情况
再加上[x+1,j]*[i,n]=s[i]的情况
弹出j,执行单调栈操作
直到h[i]>h[j],在加入[i,i]*[i,n]=s[i]的情况
为什么不要减去[j+1,i-1]*[i,n]?因为我们在读到i之前,[j+1,i-1]已经被处理完了
现在问题只有:怎样增加删除情况
令f[i]为长度为i的所有区间最小值的总和
我们来看一下[1,2]*[3,5]=s[i]的情况
长为2:2~3 f[2]+=s[i];
长为3:1~3,2~4 f[3]+=2*s[i];
长为4:1~4,2~5 f[4]+=2*s[i]
长为5:1~5 f[5]+=1*s[i]
我们发现,系数根据区间长呈勾函数
1 2 2 1
差分一次
1 1 0 -1 -1 0
二次差分
1 0 -1 -1 0 1
为什么要二次差分?
1 2 3 4 5 5 4 3 2 1
差分一次:1 1 1 1 1 0 -1 -1 -1 -1 -1
涉及了线段树区间操作,显然超时
但若再差分一次:1 0 0 0 0 -1 -1 0 0 0 0 1
就只要修改4个点
把二次差分拓展到[x+1,j]*[i,n]
最短的区间长是i-j+1,f[i-j+1]+=s[i]
最长的是区间长是n-x,f[n-x+2]+=s[i]
f[i-k+1]-=s[i]
f[n-k+2]-=s[i]
因为还要减去s[j],所以将s[i]变成s[i]-s[j]就行
对于[i,i]×[i,n]=s[i]的系数
1 1 1 1 1 1 1(n-i+1) 0 0
差分:1 0 0 0 0 0 0 0 0 -1 0
再差分:1 -1 0 0 0 0 0 0 0 -1 1
就等价于:f[1]+=s[i],f[2]-=s[i],f[n-i+2]-=s[i],f[n-i+3]+=s[i]
得到最后的数组只要求两次前缀和就行了
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
double f[];
int q[],tail,i,s[],n,m;
int gi()
{
char ch=getchar();
while (ch<''||ch>'') ch=getchar();
int x=;
while (ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x;
} int main()
{int i,k;
freopen("fence.in","r",stdin);
freopen("fence.out","w",stdout);
cin>>n;
for (i=;i<=n;i++)
{
s[i]=gi();
while (tail&&s[q[tail]]>s[i])
{
int j=q[tail],k=q[tail-];
f[i-j+]+=s[i]-s[j];
f[n-k+]+=s[i]-s[j];
f[n-j+]+=s[j]-s[i];
f[i-k+]+=s[j]-s[i];
tail--;
}
tail++;
q[tail]=i;
f[]+=s[i];f[]-=s[i];
f[n-i+]+=s[i];f[n-i+]-=s[i];
}
for (i=;i<=n;i++)
f[i]+=f[i-];
for (i=;i<=n;i++)
f[i]+=f[i-];
cin>>m;
for (i=;i<=m;i++)
{
k=gi();
printf("%.15lf\n",f[k]/(double)(n-k+));
}
}
栅栏(fence)的更多相关文章
- 山东省济南市历城第二中学——洛谷图论入门题--基本题必做 图的遍历—3.骑马修栅栏(fence)
由于我这个破题提交了十四五遍,所以我决定写篇博客来记录一下. 这个题的题目描述是这样的 首先一看这个题我瞬间就想到了一笔画问题(欧拉回路). 对于能够一笔画的图,我们有以下两个定理. 定理1:存在欧拉 ...
- .NET下的延迟加载
在应用中有很多实例可能需要延迟创建对象, 比如设计模式中的单例模式就是一种非常常见的情况.如果不考虑线程安全我们通常会编写如下代码: public class SingleInstance { pri ...
- Vulkan Tutorial 21 Staging buffer
操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 顶点缓冲区现在已经可以正常工作,但相比于显卡内部读取数据, ...
- Java 内存模型 JMM 浅析
JMM简介 Java Memory Model简称JMM, 是一系列的Java虚拟机平台对开发者提供的多线程环境下的内存可见性.是否可以重排序等问题的无关具体平台的统一的保证.(可能在术语上与Java ...
- 【D3D12学习手记】CPU/GPU Synchronization
由于有两个并行运行的处理器(CPU和GPU),会出现许多同步问题.假设我们有一些资源R存储了我们希望绘制的某些几何体的位置. 此外,假设CPU更新R的数据以存储位置p1,然后将引用R的绘图命令C添加到 ...
- DP-DAY3游记
问题 A: 2017夏令营第一阶段(Day3)问题A拆分数字I 题目描述 把数字N拆分一些正整数的和,问有多少种不同的方法? 例如:N=4,有1+1+1+1.1+1+2.1+2+1.1+3.2+ ...
- cpu缓存和volatile
目录 CPU缓存的由来 CPU缓存的概念 CPU缓存的意义 缓存一致性协议-MESI协议 Store Buffers Store Forwarding Memory Barriers Invalida ...
- [LeetCode] Erect the Fence 竖立栅栏
There are some trees, where each tree is represented by (x,y) coordinate in a two-dimensional garden ...
- [Swift]LeetCode276. 粉刷栅栏 $ Paint Fence
There is a fence with n posts, each post can be painted with one of the k colors. You have to paint ...
随机推荐
- MyGod_alpha版本测试报告
买尬-Alpha版本测试报告 @(二手市场APP)[MyGod团队|团队项目|版本测试] 项目名称:武汉大学校园二手市场APP--买尬 软件版本:1.0.0 开发团队:MyGod 开发代表:程环宇 张 ...
- 和为S的连续正数序列——牛客网(剑指offer)
题目描述 小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100.但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数).没多久,他 ...
- Linux下进程间通信的六种机制详解
linux下进程间通信的几种主要手段: 1.管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具 ...
- 201621123031 《Java程序设计》第14周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计. 答 ...
- 《高级软件测试》web测试实践--12月31日记录
今日的任务进度如上图所示.我们对华科软件学院和计算机学院的网站进行了对比分析,分析的角度包括基本功能分析.前端性能分析.用户调研等.在这里我们简单总结下我们得到的评测结果. 基本功能分析:计算机学院和 ...
- Unity使用脚本进行批量动态加载贴图
先描述一下我正在做的这个项目,是跑酷类音游. 那么跑酷类音游在绘制跑道上的时候,就要考虑不同的砖块显示问题.假设我有了一个节奏列表,那么我们怎么将不同的贴图贴到不同的砖块上去呢? 我花了好几个小时才搞 ...
- System V IPC 之消息队列
消息队列和共享内存.信号量一样,同属 System V IPC 通信机制.消息队列是一系列连续排列的消息,保存在内核中,通过消息队列的引用标识符来访问.使用消息队列的好处是对每个消息指定了特定消息类型 ...
- js正则表达语法
/* *通过量词可以设置一个内容出现的次数 *量词只对它前边的一个内容起作用.所以在作用多个时需要用小括号()来向计算机说明这是一个整体. *-{n}代表正好出现n次. *-{m,n}出现了m-n次. ...
- 移动端300ms与点透总结
300ms,主要发生在mobile 为啥会出现300ms延迟现象 浏览器想知道用户是否dobule tap(双击缩放) 下列情况不会出现300ms延迟 桌面浏览器 meta的viewport设置了us ...
- GIT入门笔记(20)- 使用eclipse 基于 git 开发过程梳理
一.创建本地分支 1.下载/更新 本地 主干 如果本地还没有 本地主干,下载:git clone 如果本地已有了 本地主干,更新:git pull 工程右键菜单:team -> pull 2.基 ...