bzoj2655calc 容斥+dp
2655: calc
Time Limit: 30 Sec Memory Limit: 512 MB
Submit: 322 Solved: 197
[Submit][Status][Discuss]
Description
一个序列a1,...,an是合法的,当且仅当:
长度为给定的n。
a1,...,an都是[1,A]中的整数。
a1,...,an互不相等。
一个序列的值定义为它里面所有数的乘积,即a1a2...an。
求所有不同合法序列的值的和。
两个序列不同当且仅当他们任意一位不一样。
输出答案对一个数mod取余的结果。
Input
一行3个数,A,n,mod。意义为上面所说的。
Output
一行结果。
Sample Input
9 7 10007
Sample Output
3611
HINT
数据规模和约定
0:A<=10,n<=10。
1..3:A<=1000,n<=20.
4..9:A<=10^9,n<=20
10..19:A<=10^9,n<=500。
全部:mod<=10^9,并且mod为素数,mod>A>n+1
算法1
容斥法:
推荐blog
http://blog.csdn.net/qq_20669971/article/details/52790835
有一点不是很懂,就是那个统计f数组时阶乘那里
又想了一下,大概是每次填数,我们是从前向后填的,
而实际上,是可以任意顺序填的,虽然f[i-j]贡献的答案是一样的,
但i-j个格子不同,填数的方案不同,应该多算几次
例如下面这张图片,现在该填12的位置,考虑重复4个位置,C(11,3)*f[8]选出了3 6 8三个位置贡献答案
实际上是可以先填上3 或6 或8再填两边,虽然都是f[8]贡献答案但是填数方案不同
先填3 那么得到的答案就是由[1,2][4,11]转移的
先填6 那么得到的答案就是由[1,5][7,11]转移的
先填8 那么得到的答案就是由[1,7][9,11]转移的
而每一层都需要这样考虑,所以 *3!
算法2
暴力法。
f[i][j]表示前i个格子,第i个格子填<=j的数的方案数
f[i][j]=f[i-1][j-1]*j+f[i][j-1] 复杂度O(nA)
第二维枚举A是肯定要TLE的,考虑优化
可以观察出这个东西可以表示成一个最高次为2n的多项式,未知数为j
那么就可以用拉格朗日求啦
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define N 605
using namespace std;
ll inv[N],c[N][N],fac[N],g[N],f[N],A,n,mod;
int main(){
cin>>A>>n>>mod;
fac[0]=1;inv[1]=1;
for(int i=1;i<=510;i++)
fac[i]=(fac[i-1]*i)%mod;
for(int i=2;i<=510;i++)
inv[i]=(1ll*(mod-mod/i)*inv[mod%i])%mod;
for(int i=0;i<=n;i++)c[i][i]=c[i][0]=1;
for(int i=1;i<=510;i++)
for(int j=1;j<i;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
g[0]=(A+1)%mod;g[1]=(1ll*A*(A+1)>>1)%mod;
ll t=(A+1)*(A+1)%mod;
for(int i=2;i<=n;i++){
t=((A+1)*t)%mod;
ll sum=(A+1)%mod;
for(int j=1;j<i;j++)
sum=(sum+1ll*c[i+1][j]*g[j]%mod)%mod;
sum=(t-sum)%mod;
sum<0?sum+=mod:1;
g[i]=(sum*inv[i+1])%mod;
}
f[0]=1;f[1]=(1ll*(A+1)*A>>1)%mod;
for(int i=2;i<=n;i++){
f[i]=g[1]*f[i-1]%mod;
ll fg=-1;
for(int j=i-2;~j;j--){
f[i]=(f[i]+1ll*fg*fac[i-1-j]%mod*c[i-1][i-1-j]%mod*g[i-j]%mod*f[j]%mod+mod)%mod;
fg=-fg;
}
}
cout<<f[n];
return 0;
}
bzoj2655calc 容斥+dp的更多相关文章
- HDU 5794 A Simple Chess (容斥+DP+Lucas)
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...
- [CF1086E]Beautiful Matrix(容斥+DP+树状数组)
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...
- 【BZOJ3622】已经没有什么好害怕的了 容斥+DP
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- $bzoj2560$ 串珠子 容斥+$dp$
正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...
- 【XSY3156】简单计数II 容斥 DP
题目大意 定义一个序列的权值为:把所有相邻的相同的数合并为一个集合后,所有集合的大小的乘积. 特别的,第一个数和最后一个数是相邻的. 现在你有 \(n\) 种数,第 \(i\) 种有 \(c_i\) ...
- bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...
- AGC 005D.~K Perm Counting(容斥 DP 二分图)
题目链接 \(Description\) 给定\(n,k\),求 满足对于所有\(i\),\(|a_i-i|\neq k\)的排列的个数. \(2\leq n\leq 2000,\quad 1\leq ...
- ARC 101E.Ribbons on Tree(容斥 DP 树形背包)
题目链接 \(Description\) 给定一棵\(n\)个点的树.将这\(n\)个点两两配对,并对每一对点的最短路径染色.求有多少种配对方案使得所有边都至少被染色一次. \(n\leq5000\) ...
- 【做题】51NOD1518 稳定多米诺覆盖——容斥&dp
题意:求有多少种方案,用多米诺骨牌覆盖一个\(n\times m\)的棋盘,满足任意一对相邻行和列都至少有一个骨牌横跨.对\(10^9+7\)取模. \(n,m \leq 16\) 首先,这个问题的约 ...
随机推荐
- iOS 简易无限滚动的图片轮播器-SDCycleScrollView
@interface ViewController () <</span>SDCycleScrollViewDelegate> @end @implementation Vie ...
- Django 分类标签查找
from django.conf.urls import url from django.contrib import admin from blog.views import index,stude ...
- 关于搭建MyBatis框架(二)
由于在[关于使用Mybatis的使用说明(一)http://www.cnblogs.com/zdb292034/p/8675766.html]中存在不太完善地方,通过此片文档进行修订: 阅读指南:(1 ...
- JAVA_SE基础——45.基本类型变量.值交换[独家深入解析]
需求:定义一个函数交换两个基本类型变量的值. 相信看过我前面的文章的同学都应该看的懂我以下的代码: class Demo2 { public static void main(String[] arg ...
- 第二章 初识JSP
第二章 初识JSP 一.JSP简述 1.是JSP JSP是指在HTML中嵌入Java脚本语言.全称(Java Server Pages) 当用户通过浏览器访问Web应用时,使用JSP容器对请求的J ...
- 静态链表的C实现(基于数据结构 严蔚敏)
静态链表是利用一维数组实现逻辑上的单链表结构,结点的逻辑上相邻但物理位置上不一定相邻,因为内存分配上是一次性的,故称为静态. 特点: 预先需要一片连续的存储空间: 非随机存取: 无现成的"内 ...
- 开源软件:NoSql数据库 - 图数据库 Cassandra
转载原文:http://www.cnblogs.com/loveis715/p/5299495.html Cassandra简介 在前面的一篇文章<图形数据库Neo4J简介>中,我们介绍了 ...
- DevExpress控件的GridControl实现行多选
最近用到DevExpress控件的GridControl控件,需要用到行多选的操作,在网上找的资料,自己总结一下. 先展示一下效果:
- Django实现发邮件
1 首先去自己的邮箱申请,在设置里面找,申请开通smtp服务,我用的是163邮箱 2 在项目下settings.py中添加设置: # 配置邮箱发邮件的相关功能 #这一项是固定的 EMAIL_BACKE ...
- Vue框架
Vue框架 环境: windows python3.6.2 Vue的cdn: <script src="https://cdn.jsdelivr.net/npm/vue"&g ...