瓦西亚和皮台亚摆放了m个方块。方块被编号为0到m-1(每个号码出现恰好一次)。现在建立一个座标系OX表示地面,OY的方向是竖直向上的。每一方块的左下角有一个座标而且是整点座标。

摆放好的方块一定要是稳定的。稳定的含意是每一个不在地面上的方块在他的下面至少有一个方块与他相接触。可以是共边,也可以是共点的。也就是说如果方块座标为(x,y),要么y=0,或者存在一个方块的座标为(x-1,y-1)或者 (x,y-1) 或者 (x+1,y-1)。

现在瓦西亚和皮台亚要轮流把这些方块一个个拆下来。按照拆下来的顺序从左到右摆成一行,那么方块上面的编号就会组成一个m进制的数字。

拆的过程中,要始终保持剩下的方块稳定。瓦西亚想要最终的数字尽可能大,而皮台亚想要尽可能小,瓦西亚先开始拆。

请帮助计算一下最终形成的数字是多少,结果比较大,输出对 109+9 取余后的结果。

解题报告:

用时:1h10min,1WA1TLE

一开始认为就是开优先队列跑拓扑排序,后来发现度不为0也可以入队,所以只拿了60,然后我想到了正确贪心:

对于瓦西亚的从后往前枚举,直到出现第一个能消除的,皮台亚的同理.

然后打了这个贪心的暴力验证一下,发现是对的,考虑优化:

我们把所有可以消除的点丢入优先队列中,然后每次取出编号最小的,我们需要维护一个\(res[i]\),表示\(i\)最下面还有几个没有消除的点,然后我们检查一个点不合法我们就判断其上面的点是否\(res[i]<=1\),注意每消除一个点就要去更新上面点的\(res\)值,并且如果\(res[i]<=1\)时还要check他上方的点的下方的三个点是否会不合法,这样一个点最多入队三次,均摊复杂度\(O(nlogn)\)

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <cstdio>
#include <vector>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=1e5+5,inf=1e9+5,mod=1e9+9;
int n;bool vis[N];
struct node{
int x,y,id;
bool operator <(const node &pp)const{
if(y!=pp.y)return y<pp.y;
return x<pp.x;
}
}a[N];
struct comp{
bool operator ()(int &i,int &j)const{
return i>j;
}
};
priority_queue<int>q;
priority_queue<int,vector<int>,comp>qm;
vector<int>s[N];
int b[N],m=0,num=0,head[N],to[N*3],nxt[N*3],du[N],re[N];
void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
bool check(int x){
if(vis[x])return false;
for(int i=head[x];i;i=nxt[i]){
if(!vis[to[i]] && du[to[i]]<=1)return false;
}
return true;
}
bool ca[N];
void solve(){
bool t=0;int x;
for(int i=1;i<=n;i++){
if(!t){
while(!q.empty()){
if(!ca[q.top()])q.pop();
else break;
}
x=q.top();q.pop();
}
else{
while(!qm.empty()){
if(!ca[qm.top()])qm.pop();
else break;
}
x=qm.top();qm.pop();
}
vis[x]=true;ca[x]=false;
for(int k=0,sz=s[x].size(),u;k<sz;k++){
u=s[x][k];
if(check(u))ca[u]=true,qm.push(u);q.push(u);
}
for(int j=head[x];j;j=nxt[j]){
du[to[j]]--;
for(int k=0,sz=s[to[j]].size(),u;k<sz;k++){
u=s[to[j]][k];
if(!check(u))ca[u]=false;
else{
ca[u]=true;qm.push(u);q.push(u);
}
}
}
re[i]=x-1;t^=1;
}
ll ans=0,mul=1;
for(int i=n;i>=1;i--){
ans+=mul*re[i];
ans%=mod;
mul*=n;mul%=mod;
}
printf("%lld\n",ans);
}
void work()
{
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i].x,&a[i].y);
a[i].id=i;
}
sort(a+1,a+n+1);
for(int i=1;i<=n;i++)b[++m]=a[i].y;
int sta;
for(int i=1;i<=n;i++){
sta=lower_bound(b+1,b+m+1,a[i].y-1)-b;
for(int j=sta;j<i;j++){
if(a[j].y!=a[i].y-1)break;
if(abs(a[j].x-a[i].x)<=1){
link(a[j].id,a[i].id);du[a[i].id]++;
s[a[i].id].push_back(a[j].id);
}
}
}
for(int i=1;i<=n;i++){
if(check(i))q.push(i),qm.push(i),ca[i]=true;
}
solve();
} int main()
{
work();
return 0;
}

51Nod 1530 稳定方块的更多相关文章

  1. 51nod - 1659 - 数方块 - 简单数学

    https://www.51nod.com/Challenge/Problem.html#!#problemId=1659 随便弄了一下发现公式,然后从cheatsheet抄一抄平方和公式,发现可以提 ...

  2. 51nod 1518 稳定多米诺覆盖(容斥+二项式反演+状压dp)

    [传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥 ...

  3. 胡小兔的OI日志3 完结版

    胡小兔的 OI 日志 3 (2017.9.1 ~ 2017.10.11) 标签: 日记 查看最新 2017-09-02 51nod 1378 夹克老爷的愤怒 | 树形DP 夹克老爷逢三抽一之后,由于采 ...

  4. 【51Nod】1519 拆方块 贪心+递推

    [题目]1519 拆方块 [题意]给定n个正整数,\(A_i\)表示第i堆叠了\(A_i\)个石子.每轮操作将至少有一面裸露的石子消除,问几轮所有石子均被消除.\(n \leq 10^5\). [算法 ...

  5. 51nod 80分算法题

    1537:见前几篇. 1627:题意:给定n,m的网格(10^5),初始状态为(1,1),你每次可以瞬移到右下方(不可以同行同列逗留)任何一个方格里,求移动到n,m的方案数. 一句话题解:首先很容易想 ...

  6. 51Nod1518 稳定多米诺覆盖 动态规划 插头dp 容斥原理

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1518.html 题目传送门 - 51Nod1518 题意 51Nod真是个好OJ ,题意概括的真好, ...

  7. 51nod 1206 && hdu 1828 Picture (扫描线+离散化+线段树 矩阵周长并)

    1206 Picture  题目来源: IOI 1998 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 给出平面上的N个矩形(矩形的边平行于X轴 ...

  8. 51nod 1471 小S的兴趣 | 分块 链表

    51nod 1471 小S的兴趣 题面 小S喜欢有趣的事.但是,每个人的兴趣都是独特的.小S热衷于自问自答.有一天,小S想出了一个问题. 有一个包含n个正整数的数组a和针对这个数组的几个问题.这些问题 ...

  9. 51nod 1208 窗上的星星 | 线段树 扫描线

    51nod 1208 Stars In Your Window 题面 整点上有N颗星星,每颗星星有一个亮度.用一个平行于x轴和y轴,宽为W高为H的方框去套星星.套住的所有星星的亮度之和为S(包括边框上 ...

随机推荐

  1. Tornado websocket应用

    应用场景 WebSocket 的特点如下 适合服务器主动推送的场景(好友上线,即时聊天信息,火灾警告,股票涨停等) 相对于Ajax和Long poll等轮询技术,它更高效,不耗费网络带宽和计算资源 它 ...

  2. nyoj 还是回文

    还是回文 时间限制:2000 ms | 内存限制:65535 KB 难度:3 描述 判断回文串很简单,把字符串变成回文串也不难.现在我们增加点难度,给出一串字符(全部是小写字母),添加或删除一个字符, ...

  3. Huginn实现自动通过slack推送豆瓣高分电影

    博客搬迁至https://blog.wangjiegulu.com RSS订阅:https://blog.wangjiegulu.com/feed.xml 原文链接:https://blog.wang ...

  4. JAVA_SE基础——14.循环结构语句

    建议有些基础的同学阅读,0基础可能会有些困难(最好看正文配合基础课本的例子) 所谓循环语句主要就是在满足条件的情况下反复执行某一个操作.Java提供了3种常用的循环语句,分别为for循环语句.whil ...

  5. java实现图片压缩

    java实现图片压缩 package Test; import java.awt.Image; import java.awt.image.BufferedImage; import java.io. ...

  6. SpringCloud应用入库后乱码问题

    一.现象 1.请求 2.入库后 二.解决过程 1.配置application.properties 2.代码配置 3.数据库(关键!!) 3.请求 三.验证过程 1.win10 - 本地验证通过 2. ...

  7. 单点登录实现机制:web-sso

    参考链接,感谢作者:https://zm10.sm-tc.cn/?src=l4uLj8XQ0IiIiNGckZ2TkJiM0ZyQktCZlo2Mi5uNmp6S0I/QysrJyszPztGXi5K ...

  8. Mac 中配置Apache

    使用的mac版本是10.10.1,mac自带的Apache环境 分为两部分: 1.启动Apache 2.设置虚拟主机 启动Apache 打开终端, >>sudo apachectl -v, ...

  9. String、StringBuffer、StringBulider之间的联系和区别

    首先,我们大概总体的解释一下这三者的区别和联系 String的值是不可变的,这就导致每次对String的操作都会生成新的String对象,不仅效率低下,而且大量浪费有限的内存空间. StringBuf ...

  10. window7下配置python2.7+tornado3.3开发环境

    发现之前写太繁琐..这里分享下同学的方法 1,安装 Python 2.7.x 版本地址:https://www.python.org/downloads/release/python-278/2,安装 ...