题目描述

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

输入输出格式

输入格式:

输入文件中仅包含一行两个整数a、b,含义如上所述。

输出格式:

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

输入输出样例

输入样例#1:
复制

1 99
输出样例#1: 复制

9 20 20 20 20 20 20 20 20 20

说明

30%的数据中,a<=b<=10^6;

100%的数据中,a<=b<=10^12。

数位dp的套路记忆化搜索

枚举d=0~9,分别统计

f[pos][sum]表示当前在pos位,d这个数出现个数

flag表示是否限位,k表示是否前导0

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
int s[],len;
lol A,B,f[][];
lol dfs(int pos,int sum,int flag,int k,int d)
{int i;
lol cnt=;
if (pos<=) return sum;
if (!flag&&k&&f[pos][sum]!=-) return f[pos][sum];
int ed=;
if (flag) ed=s[pos];
for (i=;i<=ed;i++)
{
if (k==&&i==)
cnt+=dfs(pos-,sum,flag&&(i==ed),,d);
else
{
cnt+=dfs(pos-,sum+(i==d),flag&&(i==ed),,d);
}
}
if (!flag&&k) f[pos][sum]=cnt;
return cnt;
}
lol solve(lol x,int d)
{int i,j,k;
memset(f,-,sizeof(f));
len=;
while (x)
{
s[++len]=x%;
x/=;
}
return dfs(len,,,,d);
}
int main()
{int i;
cin>>A>>B;
printf("%lld",solve(B,)-solve(A-,));
for (i=;i<=;i++)
{
printf(" %lld",solve(B,i)-solve(A-,i));
}
}

[ZJOI2010]数字计数的更多相关文章

  1. 【洛谷】2602: [ZJOI2010]数字计数【数位DP】

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入输出格式 输入格式: 输入文件中仅包含一行两个整数a ...

  2. P2602 [ZJOI2010]数字计数(递推)

    P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...

  3. P2602 [ZJOI2010]数字计数&P1239 计数器&P4999 烦人的数学作业

    P2602 [ZJOI2010]数字计数 题解 DFS 恶心的数位DP 对于这道题,我们可以一个数字一个数字的求 也就是分别统计区间 [ L , R ] 内部数字 i 出现的次数 (0<=i&l ...

  4. 数位dp详解&&LG P2602 [ZJOI2010]数字计数

    数位dp,适用于解决一类求x~y之间有多少个符合要求的数或者其他. 例题 题目描述 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除 ...

  5. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

  6. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  7. 洛谷P2602 [ZJOI2010]数字计数(数位dp)

    数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...

  8. LuoguP2602 [ZJOI2010]数字计数【数位dp】By cellur925

    题目传送门 题目大意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 继续数位dp=w=. 这一次我们不需要记录$pre$啦!(撒花). 因为这次我们需要的 ...

  9. Luogu P2602 [ZJOI2010]数字计数

    这算是一道数位DP的入门题了吧虽然对于我来说还是有点烦 经典起手式不讲了吧,\(ans(a,b)\to ans(1,b)-ans(1,a-1)\) 我们首先预处理一个东西,用\(f_i\)表示有\(i ...

  10. 1833. [ZJOI2010]数字计数【数位DP】

    Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output 输出文 ...

随机推荐

  1. 结合jenkins在Linux服务器搭建测试环境

    何时使用: 测试过程中我们需要持续构建一个软件项目,为避免重复的手动下载.解压操作,我们需要搭建一个能够自动构建的测试环境,当代码有更新时,测试人员只需点一下[构建]即可拉取最新的代码进行测试(也可设 ...

  2. Beta版本敏捷冲刺每日报告——Day2

    1.情况简述 Beta阶段第二次Scrum Meeting 敏捷开发起止时间 2017.11.3 08:00 -- 2017.11.3 22:00 讨论时间地点 2017.11.3晚9:00,软工所实 ...

  3. Linux下Java通用安装方法

    1.到oracle官网下下载对应jdk包,一般为%x64%.tar.gz格式. 2.建立目录: $ mkdir /usr/local/java 3.将压缩包解压至/usr/local/java 4.修 ...

  4. 【iOS】Swift类的继承、构造方法、析构器等复习

    一.继承与重写, 防止重写 1.1 基类, 不继承任何类. Swift不想OC或者Java中继承自Object类.定义一个类,不继承任何类,该类就是基类. [java] view plaincopy ...

  5. nyoj n-1位数

    n-1位数 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则求出w的后n-1位的 ...

  6. 织梦cms网上复制图片不可用的解决方法

    背景描述: 织梦cms采集图片集时, 需要使用织梦cms提供的"网上复制图片"的功能, 好像我这里这个功能一直不可用, 今天下定决心研究了下源代码并进行了适当修改, 将我的修改提供 ...

  7. Apache自带 ab压测工具 Windows配置使用说明 - 随笔记录

    我们先来了解一下ab工具的概念,摘自网络: ab是apache自带的压力测试工具.ab非常实用,它不仅可以对apache服务器进行网站访问压力测试,也可以对或其它类型的服务器进行压力测试.比如ngin ...

  8. python 面向对象之封装与类与对象

    封装 一,引子 从封装本身的意思去理解,封装就好像是拿来一个麻袋,把小猫,小狗,小王八,小老虎一起装进麻袋,然后把麻袋封上口子.照这种逻辑看,封装='隐藏',这种理解是相当片面的 二,先看如何隐藏 在 ...

  9. 04_Linux目录文件操作命令1(mv ls cd...)_我的Linux之路

    上一节已经给大家讲了Linux的目录结构,相信大家已经对Linux的整个目录结构有所了解 现实中,服务器(包含Linux,Unix,windows server)一般都摆放在机房里,因为一个机房摆放了 ...

  10. PHP之this和self

    self在对象中自己调用自己使用 $this在实例化后使用$this方法 在访问PHP类中的成员变量或方法时,如果被引用的变量或者方法被声明成const(定义常量)或者static(声明静态),那么就 ...