题目描述

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

输入输出格式

输入格式:

输入文件中仅包含一行两个整数a、b,含义如上所述。

输出格式:

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

输入输出样例

输入样例#1:
复制

1 99
输出样例#1: 复制

9 20 20 20 20 20 20 20 20 20

说明

30%的数据中,a<=b<=10^6;

100%的数据中,a<=b<=10^12。

数位dp的套路记忆化搜索

枚举d=0~9,分别统计

f[pos][sum]表示当前在pos位,d这个数出现个数

flag表示是否限位,k表示是否前导0

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
int s[],len;
lol A,B,f[][];
lol dfs(int pos,int sum,int flag,int k,int d)
{int i;
lol cnt=;
if (pos<=) return sum;
if (!flag&&k&&f[pos][sum]!=-) return f[pos][sum];
int ed=;
if (flag) ed=s[pos];
for (i=;i<=ed;i++)
{
if (k==&&i==)
cnt+=dfs(pos-,sum,flag&&(i==ed),,d);
else
{
cnt+=dfs(pos-,sum+(i==d),flag&&(i==ed),,d);
}
}
if (!flag&&k) f[pos][sum]=cnt;
return cnt;
}
lol solve(lol x,int d)
{int i,j,k;
memset(f,-,sizeof(f));
len=;
while (x)
{
s[++len]=x%;
x/=;
}
return dfs(len,,,,d);
}
int main()
{int i;
cin>>A>>B;
printf("%lld",solve(B,)-solve(A-,));
for (i=;i<=;i++)
{
printf(" %lld",solve(B,i)-solve(A-,i));
}
}

[ZJOI2010]数字计数的更多相关文章

  1. 【洛谷】2602: [ZJOI2010]数字计数【数位DP】

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入输出格式 输入格式: 输入文件中仅包含一行两个整数a ...

  2. P2602 [ZJOI2010]数字计数(递推)

    P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...

  3. P2602 [ZJOI2010]数字计数&P1239 计数器&P4999 烦人的数学作业

    P2602 [ZJOI2010]数字计数 题解 DFS 恶心的数位DP 对于这道题,我们可以一个数字一个数字的求 也就是分别统计区间 [ L , R ] 内部数字 i 出现的次数 (0<=i&l ...

  4. 数位dp详解&&LG P2602 [ZJOI2010]数字计数

    数位dp,适用于解决一类求x~y之间有多少个符合要求的数或者其他. 例题 题目描述 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除 ...

  5. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

  6. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  7. 洛谷P2602 [ZJOI2010]数字计数(数位dp)

    数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...

  8. LuoguP2602 [ZJOI2010]数字计数【数位dp】By cellur925

    题目传送门 题目大意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 继续数位dp=w=. 这一次我们不需要记录$pre$啦!(撒花). 因为这次我们需要的 ...

  9. Luogu P2602 [ZJOI2010]数字计数

    这算是一道数位DP的入门题了吧虽然对于我来说还是有点烦 经典起手式不讲了吧,\(ans(a,b)\to ans(1,b)-ans(1,a-1)\) 我们首先预处理一个东西,用\(f_i\)表示有\(i ...

  10. 1833. [ZJOI2010]数字计数【数位DP】

    Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output 输出文 ...

随机推荐

  1. alpha-咸鱼冲刺day5-紫仪

    总汇链接 一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 !!!QAQ可以做到跟数据库交互了!!!!先来撒花花!(然后继续甲板) 四,问题困难   日常啥都不会,百度真心玩一年 ...

  2. Beta第二天

    听说

  3. I/O多路转接之poll 函数

    poll 一.poll()函数: 这个函数是某些Unix系统提供的用于执行与select()函数同等功能的函数,自认为poll和select大同小异,下面是这个函数的声明: #include < ...

  4. vue 在methods中调用mounted中的方法?

    首先可以在data中先声明一个变量 比如 isShow=' ' mounted 中 ---> methods 中 --->  this.sureDelBox(item) 直接this调用 ...

  5. sql 几种循环方式

    1:游标方式 ALTER PROCEDURE [dbo].[testpro] as ) --日期拼接 ) --仪表编号 ) --数据采集表 ) --数据采集备份表 ) ) begin set @yea ...

  6. PHP之this和self

    self在对象中自己调用自己使用 $this在实例化后使用$this方法 在访问PHP类中的成员变量或方法时,如果被引用的变量或者方法被声明成const(定义常量)或者static(声明静态),那么就 ...

  7. LeetCode & Q28-Implement strStr-Easy

    String Two Pointers Description: Implement strStr(). Returns the index of the first occurrence of ne ...

  8. CentOS 7 Redis安装配置

    1.获取Redis压缩包: wget http:.tar.gz 2.解压测试: mv 到 /usr/local/ tar .tar cd redis 3.使用make测试编译: make 这里可能会出 ...

  9. 帧动画的创建方式 - xml方式

    废话不多说,先看东西   创建帧动画1 - xml方式 帧动画的创建方式主要以下2种: * 用xml创建动画: * 用代码创建动画:   本文内容主要关注 xml文件 创建帧动画的方式   xml文件 ...

  10. 说说Java代理模式

    代理实现可以分为静态代理和动态代理. 静态代理 静态代理模式其实很常见,比如买火车票这件小事:黄牛相当于是火车站的代理,我们可以通过黄牛买票,但只能去火车站进行改签和退票.在代码实现中相当于为一个委托 ...