Hive函数:SUM,AVG,MIN,MAX
转自:http://lxw1234.com/archives/2015/04/176.htm,Hive分析窗口函数(一) SUM,AVG,MIN,MAX
之前看到大数据田地有关于max()over(partition by)的用法,今天恰好工作中用到了它,但是使用中遇到了一个问题:在max(rsrp)over(partition by buildingid,height) as max_rsrp返回的结果不是分组中的最大值。最中找到了问题的原因:max_rsrp数据类型为string而不是double类型,导致的一个bug问题。
再处理的过程中也再次把大数据田地的中关于sum,avg,max,min的函数用法做了demo,因此有了该参考后的文章。
数据准备:
echo ''>data_file.txt
vim data_file.txt
cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4
cookie2,2015-04-10,6
cookie2,2015-04-11,5
cookie2,2015-04-12,7
cookie2,2015-04-13,4
cookie2,2015-04-14,3
cookie2,2015-04-15,5
cookie2,2015-04-16,5
hadoop fs -rm -r /user/jrf/test_data
hadoop fs -mkdir /user/jrf/test_data
hadoop fs -copyFromLocal data_file.txt /user/jrf/test_data/
drop table if exists test_data;
create EXTERNAL TABLE test_data (
cookieid string,
createtime string, --day
pv INT
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile location '/user/jrf/test_data/';
select * from test_data;
+---------------------+-----------------------+---------------+--+
| test_data.cookieid | test_data.createtime | test_data.pv |
+---------------------+-----------------------+---------------+--+
| cookie1 | 2015-04-10 | 1 |
| cookie1 | 2015-04-11 | 5 |
| cookie1 | 2015-04-12 | 7 |
| cookie1 | 2015-04-13 | 3 |
| cookie1 | 2015-04-14 | 2 |
| cookie1 | 2015-04-15 | 4 |
| cookie1 | 2015-04-16 | 4 |
| cookie2 | 2015-04-10 | 6 |
| cookie2 | 2015-04-11 | 5 |
| cookie2 | 2015-04-12 | 7 |
| cookie2 | 2015-04-13 | 4 |
| cookie2 | 2015-04-14 | 3 |
| cookie2 | 2015-04-15 | 5 |
| cookie2 | 2015-04-16 | 5 |
+---------------------+-----------------------+---------------+--+
SUM — 注意,结果和ORDER BY相关,默认为升序
SELECT cookieid,createtime,pv,
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
SUM(pv) OVER(PARTITION BY cookieid) AS pv3,--分组内所有行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4,--当前行+往前3行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5,--当前行+往前3行+往后1行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 1 | 26 | 1 | 6 | 26 |
| cookie1 | 2015-04-11 | 5 | 6 | 6 | 26 | 6 | 13 | 25 |
| cookie1 | 2015-04-12 | 7 | 13 | 13 | 26 | 13 | 16 | 20 |
| cookie1 | 2015-04-13 | 3 | 16 | 16 | 26 | 16 | 18 | 13 |
| cookie1 | 2015-04-14 | 2 | 18 | 18 | 26 | 17 | 21 | 10 |
| cookie1 | 2015-04-15 | 4 | 22 | 22 | 26 | 16 | 20 | 8 |
| cookie1 | 2015-04-16 | 4 | 26 | 26 | 26 | 13 | 13 | 4 |
| cookie2 | 2015-04-10 | 6 | 6 | 6 | 35 | 6 | 11 | 35 |
| cookie2 | 2015-04-11 | 5 | 11 | 11 | 35 | 11 | 18 | 29 |
| cookie2 | 2015-04-12 | 7 | 18 | 18 | 35 | 18 | 22 | 24 |
| cookie2 | 2015-04-13 | 4 | 22 | 22 | 35 | 22 | 25 | 17 |
| cookie2 | 2015-04-14 | 3 | 25 | 25 | 35 | 19 | 24 | 13 |
| cookie2 | 2015-04-15 | 5 | 30 | 30 | 35 | 19 | 24 | 10 |
| cookie2 | 2015-04-16 | 5 | 35 | 35 | 35 | 17 | 17 | 5 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
pv1: 分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号
pv2: 同pv1
pv3: 分组内(cookie1)所有的pv累加
pv4: 分组内当前行+往前3行,如,11号=10号+11号, 12号=10号+11号+12号, 13号=10号+11号+12号+13号, 14号=11号+12号+13号+14号
pv5: 分组内当前行+往前3行+往后1行,如,14号=11号+12号+13号+14号+15号=5+7+3+2+4=21
pv6: 分组内当前行+往后所有行,如,13号=13号+14号+15号+16号=3+2+4+4=13,14号=14号+15号+16号=2+4+4=10
如果不指定ROWS BETWEEN,默认为从起点到当前行;
如果不指定ORDER BY,则将分组内所有值累加;
关键是理解ROWS BETWEEN含义,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING:表示到后面的终点
–其他AVG,MIN,MAX,和SUM用法一样。
--AVG
SELECT cookieid,createtime,pv,
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
AVG(pv) OVER(PARTITION BY cookieid) AS pv3,--分组内所有行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4,--当前行+往前3行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5,--当前行+往前3行+往后1行
AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+---------------------+---------------------+---------------------+--------------------+--------------------+---------------------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+---------------------+---------------------+---------------------+--------------------+--------------------+---------------------+--+
| cookie1 | 2015-04-10 | 1 | 1.0 | 1.0 | 3.7142857142857144 | 1.0 | 3.0 | 3.7142857142857144 |
| cookie1 | 2015-04-11 | 5 | 3.0 | 3.0 | 3.7142857142857144 | 3.0 | 4.333333333333333 | 4.166666666666667 |
| cookie1 | 2015-04-12 | 7 | 4.333333333333333 | 4.333333333333333 | 3.7142857142857144 | 4.333333333333333 | 4.0 | 4.0 |
| cookie1 | 2015-04-13 | 3 | 4.0 | 4.0 | 3.7142857142857144 | 4.0 | 3.6 | 3.25 |
| cookie1 | 2015-04-14 | 2 | 3.6 | 3.6 | 3.7142857142857144 | 4.25 | 4.2 | 3.3333333333333335 |
| cookie1 | 2015-04-15 | 4 | 3.6666666666666665 | 3.6666666666666665 | 3.7142857142857144 | 4.0 | 4.0 | 4.0 |
| cookie1 | 2015-04-16 | 4 | 3.7142857142857144 | 3.7142857142857144 | 3.7142857142857144 | 3.25 | 3.25 | 4.0 |
| cookie2 | 2015-04-10 | 6 | 6.0 | 6.0 | 5.0 | 6.0 | 5.5 | 5.0 |
| cookie2 | 2015-04-11 | 5 | 5.5 | 5.5 | 5.0 | 5.5 | 6.0 | 4.833333333333333 |
| cookie2 | 2015-04-12 | 7 | 6.0 | 6.0 | 5.0 | 6.0 | 5.5 | 4.8 |
| cookie2 | 2015-04-13 | 4 | 5.5 | 5.5 | 5.0 | 5.5 | 5.0 | 4.25 |
| cookie2 | 2015-04-14 | 3 | 5.0 | 5.0 | 5.0 | 4.75 | 4.8 | 4.333333333333333 |
| cookie2 | 2015-04-15 | 5 | 5.0 | 5.0 | 5.0 | 4.75 | 4.8 | 5.0 |
| cookie2 | 2015-04-16 | 5 | 5.0 | 5.0 | 5.0 | 4.25 | 4.25 | 5.0 |
+-----------+-------------+-----+---------------------+---------------------+---------------------+--------------------+--------------------+---------------------+--+
--MIN
SELECT cookieid,createtime,pv,
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2,--从起点到当前行,结果同pv1
MIN(pv) OVER(PARTITION BY cookieid) AS pv3,--分组内所有行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4,--当前行+往前3行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5,--当前行+往前3行+往后1行
MIN(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| cookie1 | 2015-04-11 | 5 | 1 | 1 | 1 | 1 | 1 | 2 |
| cookie1 | 2015-04-12 | 7 | 1 | 1 | 1 | 1 | 1 | 2 |
| cookie1 | 2015-04-13 | 3 | 1 | 1 | 1 | 1 | 1 | 2 |
| cookie1 | 2015-04-14 | 2 | 1 | 1 | 1 | 2 | 2 | 2 |
| cookie1 | 2015-04-15 | 4 | 1 | 1 | 1 | 2 | 2 | 4 |
| cookie1 | 2015-04-16 | 4 | 1 | 1 | 1 | 2 | 2 | 4 |
| cookie2 | 2015-04-10 | 6 | 6 | 6 | 3 | 6 | 5 | 3 |
| cookie2 | 2015-04-11 | 5 | 5 | 5 | 3 | 5 | 5 | 3 |
| cookie2 | 2015-04-12 | 7 | 5 | 5 | 3 | 5 | 4 | 3 |
| cookie2 | 2015-04-13 | 4 | 4 | 4 | 3 | 4 | 3 | 3 |
| cookie2 | 2015-04-14 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| cookie2 | 2015-04-15 | 5 | 3 | 3 | 3 | 3 | 3 | 5 |
| cookie2 | 2015-04-16 | 5 | 3 | 3 | 3 | 3 | 3 | 5 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
--MAX
SELECT cookieid,createtime,pv,
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默认为从起点到当前行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS pv2, --从起点到当前行,结果同pv1
MAX(pv) OVER(PARTITION BY cookieid) AS pv3, --分组内所有行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv4, --当前行+往前3行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) AS pv5, --当前行+往前3行+往后1行
MAX(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS pv6 --当前行+往后所有行
FROM test_data order by cookieid,createtime;
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookieid | createtime | pv | pv1 | pv2 | pv3 | pv4 | pv5 | pv6 |
+-----------+-------------+-----+------+------+------+------+------+------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 1 | 7 | 1 | 5 | 7 |
| cookie1 | 2015-04-11 | 5 | 5 | 5 | 7 | 5 | 7 | 7 |
| cookie1 | 2015-04-12 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| cookie1 | 2015-04-13 | 3 | 7 | 7 | 7 | 7 | 7 | 4 |
| cookie1 | 2015-04-14 | 2 | 7 | 7 | 7 | 7 | 7 | 4 |
| cookie1 | 2015-04-15 | 4 | 7 | 7 | 7 | 7 | 7 | 4 |
| cookie1 | 2015-04-16 | 4 | 7 | 7 | 7 | 4 | 4 | 4 |
| cookie2 | 2015-04-10 | 6 | 6 | 6 | 7 | 6 | 6 | 7 |
| cookie2 | 2015-04-11 | 5 | 6 | 6 | 7 | 6 | 7 | 7 |
| cookie2 | 2015-04-12 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| cookie2 | 2015-04-13 | 4 | 7 | 7 | 7 | 7 | 7 | 5 |
| cookie2 | 2015-04-14 | 3 | 7 | 7 | 7 | 7 | 7 | 5 |
| cookie2 | 2015-04-15 | 5 | 7 | 7 | 7 | 7 | 7 | 5 |
| cookie2 | 2015-04-16 | 5 | 7 | 7 | 7 | 5 | 5 | 5 |
+-----------+-------------+-----+------+------+------+------+------+------+--+ SELECT cookieid,
createtime,
pv,
min(pv) OVER(PARTITION BY cookieid) AS min_pv,
max(pv) OVER(PARTITION BY cookieid) AS max_pv
FROM test_data;
+-----------+-------------+-----+---------+---------+--+
| cookieid | createtime | pv | min_pv | max_pv |
+-----------+-------------+-----+---------+---------+--+
| cookie1 | 2015-04-10 | 1 | 1 | 7 |
| cookie1 | 2015-04-16 | 4 | 1 | 7 |
| cookie1 | 2015-04-15 | 4 | 1 | 7 |
| cookie1 | 2015-04-14 | 2 | 1 | 7 |
| cookie1 | 2015-04-13 | 3 | 1 | 7 |
| cookie1 | 2015-04-12 | 7 | 1 | 7 |
| cookie1 | 2015-04-11 | 5 | 1 | 7 |
| cookie2 | 2015-04-16 | 5 | 3 | 7 |
| cookie2 | 2015-04-15 | 5 | 3 | 7 |
| cookie2 | 2015-04-14 | 3 | 3 | 7 |
| cookie2 | 2015-04-13 | 4 | 3 | 7 |
| cookie2 | 2015-04-12 | 7 | 3 | 7 |
| cookie2 | 2015-04-11 | 5 | 3 | 7 |
| cookie2 | 2015-04-10 | 6 | 3 | 7 |
+-----------+-------------+-----+---------+---------+--+
Hive函数:SUM,AVG,MIN,MAX的更多相关文章
- Hive分析窗口函数(一) SUM,AVG,MIN,MAX
Hive分析窗口函数(一) SUM,AVG,MIN,MAX Hive分析窗口函数(一) SUM,AVG,MIN,MAX Hive中提供了越来越多的分析函数,用于完成负责的统计分析.抽时间将所有的分析窗 ...
- Hive学习之路 (十三)Hive分析窗口函数(一) SUM,AVG,MIN,MAX
数据准备 数据格式 cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, cookie1,, 创建数据库及表 create datab ...
- MybatisPlus Lambda表达式 聚合查询 分组查询 COUNT SUM AVG MIN MAX GroupBy
一.序言 众所周知,MybatisPlus在处理单表DAO操作时非常的方便.在处理多表连接连接查询也有优雅的解决方案.今天分享MybatisPlus基于Lambda表达式优雅实现聚合分组查询. 由于视 ...
- C# 中奇妙的函数–6. 五个序列聚合运算(Sum, Average, Min, Max,Aggregate)
今天,我们将着眼于五个用于序列的聚合运算.很多时候当我们在对序列进行操作时,我们想要做基于这些序列执行某种汇总然后,计算结果. Enumerable 静态类的LINQ扩展方法可以做到这一点 .就像之前 ...
- SQL模糊查询,sum,AVG,MAX,min函数
cmd mysql -hlocalhost -uroot -p select * from emp where ename like '___' -- 三个横线, - 代表字符,可以查询 三个enam ...
- 三、函数 (SUM、MIN、MAX、COUNT、AVG)
第八章 使用数据处理函数 8.1 函数 SQL支持利用函数来处理数据.函数一般是在数据上执行的,给数据的转换和处理提供了方便. 每一个DBMS都有特定的函数.只有少数几个函数被所有主要的DBMS等同的 ...
- LINQ to SQL Count/Sum/Min/Max/Avg Join
public class Linq { MXSICEDataContext Db = new MXSICEDataContext(); // LINQ to SQL // Count/Sum/Min/ ...
- LINQ to SQL 语句(3) 之 Count/Sum/Min/Max/Avg
LINQ to SQL 语句(3) 之 Count/Sum/Min/Max/Avg [1] Count/Sum 讲解 [2] Min 讲解 [3] Max 讲解 [4] Average 和 Agg ...
- [转]LINQ语句之Select/Distinct和Count/Sum/Min/Max/Avg
在讲述了LINQ,顺便说了一下Where操作,这篇开始我们继续说LINQ语句,目的让大家从语句的角度了解LINQ,LINQ包括LINQ to Objects.LINQ to DataSets.LINQ ...
随机推荐
- Bootatrap常用样式
1. 使div固定定位在页面的底部: // 当然, 需要加上自己的样式稍加修饰<div class="navbar navbar-fixed-bottom mobile-view-bo ...
- 多个input连接在一起的时候如何实现输入一个数字跳入下一个
这个是页面内容 ,我分了12格子,作为一个12位的会员卡号的输入;其实就是12个input我把他们放在了一个div里面 这样配上背景图,看着是一个大的输入框. <div id="A ...
- Mycat 分片规则详解--一致性hash分片
实现方式:基于hash算法的分片中,算法内部是把记录分片到一种叫做"bucket"(hash桶)的内部算法结构中的,然后hash桶与实际的分片节点一一对应,从此实现了分片.路由的功 ...
- Spark Kudu 结合
Kudu的背景 Hadoop中有很多组件,为了实现复杂的功能通常都是使用混合架构, Hbase:实现快速插入和修改,对大量的小规模查询也很迅速 HDFS/Parquet + Impala/Hive:对 ...
- Webpack 引入bootstrap
Bootstrap中是一种事实上的界面标准,标准到现在的网站大量的使用它.如果可以使用webpack引入的bootstrap.css,就可以一个npm install完成项目的依赖,而不必手工的添加到 ...
- 设计模式 --> (6)原型模式
原型(Prototype)模式 用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象. 原型模式是一种创建型设计模式,Prototype模式允许一个对象再创建另外一个可定制的对象,根本无需知 ...
- oracle exp(expdp)数据迁移(生产环境,进行数据对比校验)
前言:客户需要迁移XX 库 ZJJJ用户(迁移到其他数据库),由于业务复杂,客户都弄不清楚里面有哪些业务系统,为保持数据一致性,需要停止业务软件,中间件,杀掉oracle进程. 一.迁移数据倒出部分= ...
- shell随机生成身份证,姓名,电话,日期,分数,等级和insert语句
#!/bin/bash#生成随机身份证号,性别,年龄,电话,姓名,日期,分数和对应等级,并生成insert语句#作者AiYS,2018-02-06,转载请注明http://www.cnblogs.co ...
- Eclipse配置类似sublime的黑色主题
另一篇中,详细介绍了如何使用Eclipse+Pydev搭建Python环境,传送门:http://www.cnblogs.com/BH8ANK/p/8688110.html 下面介绍下如何在Eclip ...
- Alpha冲刺No.4
冲刺Day4 一.站立式会议 本来还想今天下午好好弄弄安卓开发,结果计划赶不上变化.(不存在的) 完成备忘录设计,个人界面设计 二.实际项目进展 搞了404(安卓和ssm的连接),好像还是不太行. 备 ...