这题的题解和我写的有一拼,异常简洁,爆炸。

这题思路dp
dp[i][j] 表示的是讨论到第n位,并比原数的前n位多了 j∗2i
显然j只能取0,1,毕竟2进制嘛
之后转移就好了,注意下面两个重要状态
dp[i][1]=dp[i][0]+2
dp[i][0]=dp[i][1]+2

#include <cstdio>
#include <cstring>
#include <vector>
#include <iostream>
#include <queue>
using namespace std;
const int N = 1e6+5;
const int MOD = 998244353;
const int INF = 0x3f3f3f3f;
char s[N];
int dp[N][2];
void gmin(int &a, int b) {
if(a > b) a = b;
} int main() {
while(~scanf("%s", s)) {
int len = strlen(s);
memset(dp, INF, sizeof(dp));
for(int i = len+1; i >= 2; --i) s[i] = s[i-2];
// for(int i = 2; i < len+2; ++i) printf("%c", s[i]); printf("\n");
s[1] = '0'; s[len+2] = '0';
// for(int i = 2; i <= len+1; ++i) printf("%c", s[i]); printf("\n");
dp[0][0] = 0; for(int i = 1; i <= len+2; ++i) {
for(int j = 0; j < 2; ++j) {
// if(dp[i-1][j] == INF) continue; if(j == 0) {
if(s[i] == '0') {
gmin(dp[i][0], dp[i-1][0]);
gmin(dp[i][1], dp[i-1][0] + 2);
} else {
gmin(dp[i][0], dp[i-1][0] + 2);
}
}else {
if(s[i] == '0') {
gmin(dp[i][1], dp[i-1][1] + 2);
}else {
gmin(dp[i][0], dp[i-1][1] + 2);
gmin(dp[i][1], dp[i-1][1]);
}
}
}
// printf("%d:%d %d\n", i, dp[i][0], dp[i][1]);
} printf("%d\n", dp[len+2][0]-1);
}
return 0;
}

hihocoder Challenge 29 B.快速乘法的更多相关文章

  1. hihocoder Challenge 29 A.序列的值

    我现在就感觉我这人现在真的没有dp的意识 其实真写起来也不难,但是把就是练的少思维跟不上,dp从根本上就是一种状态的提炼和聚集. 按照题解的意思来,表示二进制第i位的值为j(0,1)的组合有多少,然后 ...

  2. hihocoder Challenge 29 D. 不上升序列

    这场爆零比赛题目还是要补的 这道题据说是出烂掉的原题,我找了下 CF13.C/ CF371 div1 C,一模一样 我服这群原题大佬 为 当时,使 不严格递增的最小步数,那么 Otherwise 显然 ...

  3. HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)

    Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  4. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

  5. 快速幂&快速乘法

    尽管快速幂与快速乘法好像扯不上什么关系,但是东西不是很多,就一起整理到这里吧 快速幂思想就是将ax看作x个a相乘,用now记录当前答案,然后将指数每次除以2,然后将当前答案平方,如果x的2进制最后一位 ...

  6. [BZOJ4002][JLOI2015]有意义的字符串-[快速乘法+矩阵乘法]

    Description 传送门 Solution 由于这里带了小数,直接计算显然会爆掉,我们要想办法去掉小数. 而由于原题给了暗示:b2<=d<=(b+1)2,我们猜测可以利用$(\fra ...

  7. 整数快速乘法/快速幂+矩阵快速幂+Strassen算法

    快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c  二.矩 ...

  8. 快速乘法,幂计算 hdu5666

    在实际应用中为了防止数据爆出,在计算a*b%m和x^n%m时,可以采用此方法.在数论中有以下结论: a*b%m=((a%m)*(b*m))%m ; (a+b)%m=(a%m+b%m)%m ; _int ...

  9. HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法

    地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others)    M ...

随机推荐

  1. 洛谷 [P2146] 软件包管理器

    树剖 将一个软件是否安装,看作是sum数组的0或1,对于每个操作前后sum[1]的变化,就是所求 #include <iostream> #include <cstdio> # ...

  2. POJ Building roads [二分答案 2SAT]

    睡觉啦 #include <iostream> #include <cstdio> #include <cstring> #include <algorith ...

  3. BZOJ 1022: [SHOI2008]小约翰的游戏John [SJ定理]

    传送门 $anti-nim$游戏,$SJ$定理裸题 规定所有单一游戏$sg=0$结束 先手必胜: $1.\ sg \neq 0,\ 某个单一游戏sg >1$ $2.\ sg = 0,\ 没有单一 ...

  4. 51NOD 1705 七星剑 [DP 期望的线性性质]

    传送门 题意: 七颗星,第$i$课星用第$j$个宝石有$p[i][j]$的概率成功,失败将为$g[i][j]$颗星: 第$j$个宝石化费$c[j]$ 求最小期望化费 $MD$本来自己思路挺对的看了半天 ...

  5. POJ 2065 SETI [高斯消元同余]

    题意自己看,反正是裸题... 普通高斯消元全换成模意义下行了 模模模! #include <iostream> #include <cstdio> #include <c ...

  6. 浅谈JavaScript的事件(事件类型)

    Web浏览器能够发生的事件有很多种类型,不同的事件类型有不同的事件信息.DOM3级的事件类型主要包括:UI事件,用户与页面上的元素交互时触发:焦点事件,元素获得或失去焦点触发:鼠标事件,用户通过鼠标在 ...

  7. Linux系统下LNMP一键搭建Linux、PHP、MySQL环境(适合新手搭建linux下的web生成环境)

    一. 首先要解释一下,什么是LNMP,LNMP起源于LAMP,LAMP是Linux+Apache+Mysql/MariaDB+Perl/PHP/Python的缩写,这里将Web服务端的Apache替换 ...

  8. 保存文件名至txt文件中,不含后缀

    准备深度学习的训练数据时,可能会用到将图片文件名保存到txt文件中,所以用python实现了该功能.输入参数只设了两个,图片存放路径,和输出的txt文件名. 代码里写死了只识别.jpg格式,并不进行目 ...

  9. laravel框架学习-缓存,事件

    缓存配置:app/config/cache.php   缓存:     增加缓存项: Cache::put( 'key', 'value', $Cachetime );     在缓存中增加一个不存在 ...

  10. golang验证提交的数据中某个字段是否重复

    提交的json数据如下: { , , , ", , , "screen_mode": "3,2", , "ad_plats":[ ...