首先介绍一下有关最短路径的知识

从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径。解决最短路的问题有以下算法,Dijkstra算法,Bellman-Ford算法,Floyed算法和SPFA算法等。

                                                                                         ——百度百科

通俗点来说就是在图中的两点之间的最短距离(只不过这里规定了路径而已)


那么,我们的问题来了

什么是图? 

图(Graph【这也是为什么oier们通常设g数组的原因】)是表示物件与物件之间的关系的数学对象,是图论的基本研究对象。

简洁来说,就是一个神奇的表示关系的图表(别告诉我你们不知道图表是什么)

什么是权值?

在数学领域,权值指加权平均数中的每个数的频数,也称为权数或权重。

也就是这条边的价值【类似于长度】


那么这里对于一些基本的概念性的知识应该是没有什么问题了

说实话这个算法是用来求多源最短路径的算法。

                  ——gh

                    ——题记【并Orz一波】

这里的算法原理可以看做是一个相对来说和DP有些关系的DP

这个神奇的算法的复杂度井然是O(n3)【令人十分慌张】

但这个算法也有其一定的优点:

1.可以计算图中任意两点间的最短路径

2.适用于负边权的情况

…………【好处很多,我们要有一双善于发现好处的眼睛】

核心代码类似于这个

for(k=;k<=n;k++)
{
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if((i!=j)&&(i!=k)&&(j!=k)&&(f[i][k]+f[k][j]<f[i][j]))//这里是一步松弛操作,使得f[i][j]是最短的
{
f[i][j]=f[i][k]+f[k][j];
}
}
}
}

其实很好理解

这里放一个最简单的例题给大家刷一刷吧

【洛谷P1744 采购特价商品】

这里很好理解

就直接放代码了

#include<bits/stdc++.h>
using namespace std;
int a[][];
double f[][];
int n,i,j,k,x,y,m,s,e;
int main()
{
cin>>n;
for(i=;i<=n;i++)
{
cin>>a[i][]>>a[i][];
}
cin>>m;
memset(f,0x7f,sizeof(f));//将这个矩阵初始化一下
for(i=;i<=m;i++)
{
cin>>x>>y;
f[y][x]=f[x][y]=sqrt(pow(double(a[x][]-a[y][]),)+pow(double(a[x][]-a[y][]),));//这就是两点间距离公式了【注意需要强制类型转换】,因为是无向的,所以f[x][y]=f[y][x]
}
cin>>s>>e;
for(k=;k<=n;k++)
{
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if((i!=j)&&(i!=k)&&(j!=k)&&(f[i][k]+f[k][j]<f[i][j]))
{
f[i][j]=f[i][k]+f[k][j];
}
}
}
}
printf("%.2lf",f[s][e]);
}

Floyed-Warshall【弗洛伊德算法】的更多相关文章

  1. 最短路径问题---Floyed(弗洛伊德算法),dijkstra算法,SPFA算法

    在NOIP比赛中,如果出图论题最短路径应该是个常考点. 求解最短路径常用的算法有:Floyed算法(O(n^3)的暴力算法,在比赛中大概能过三十分) dijkstra算法 (堆优化之后是O(MlogE ...

  2. 弗洛伊德算法Floyed(求各顶点间最短路径):可打印最短路径

    #include <iostream> #include <string> #include <iomanip> using namespace std; #def ...

  3. Floyd算法(弗洛伊德算法)

    算法描述: Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法.从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按 ...

  4. 数据结构C语言版 弗洛伊德算法实现

    /* 数据结构C语言版 弗洛伊德算法  P191 编译环境:Dev-C++ 4.9.9.2 */ #include <stdio.h>#include <limits.h> # ...

  5. 经典问题----最短路径(Floyd弗洛伊德算法)(HDU2066)

    问题简介: 给定T条路,S个起点,D个终点,求最短的起点到终点的距离. 思路简介: 弗洛伊德算法即先以a作为中转点,再以a.b作为中转点,直到所有的点都做过中转点,求得所有点到其他点的最短路径,Flo ...

  6. js图的数据结构处理---弗洛伊德算法

    function Graph() { this.graph = [ [0, 2, 4, 0, 0, 0], [0, 0, 1, 4, 2, 0], [0, 0, 0, 0, 3, 0], [0, 0, ...

  7. 弗洛伊德算法(Floyd算法)

    原博来自http://www.cnblogs.com/skywang12345/ 弗洛伊德算法介绍 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的 ...

  8. 图(最短路径算法————迪杰斯特拉算法和弗洛伊德算法).RP

    文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪 ...

  9. [从今天开始修炼数据结构]图的最短路径 —— 迪杰斯特拉算法和弗洛伊德算法的详解与Java实现

    在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第 ...

  10. 弗洛伊德算法(Floyd )

    package com.rao.graph; /** * @author Srao * @className Floyd * @date 2019/12/11 18:43 * @package com ...

随机推荐

  1. HeadFirst设计模式读书笔记之策略模式

    1. 例子 1. 做一个鸭子模拟器,里面有很多不同的鸭子,有的可以游泳,有的可以睡觉,有的可以呱呱叫,一般套路是定义一个鸭子的超类,在 超类里定义睡觉,游泳,呱呱叫的方法,再让不同的鸭子子类继承这个超 ...

  2. js 滚轮控制图片缩放大小和拖动

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. git 提交项目代码到码云步骤 以及出现错误解决办法

    git initgit remote add origin 项目地址git add .git commit -m "注释"git push origin master 出现错误 $ ...

  4. Webpack4教程 - 第三部分,如何使用插件

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者.原文出处:https://wanago.io/2018/07/23/webpack-4-course-part ...

  5. arcgis api 3.x for js 入门开发系列十四最近设施点路径分析(附源码下载)

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...

  6. typescript的函数

    1:默认参数(传入值会覆盖默认参数,不传值也行) function getinfo(name:string,age:number=20):string{ return `${name}---${age ...

  7. Delphi中使用ISuperObject解析Json数据

    Java.Php等语言中都有成熟的框架来解析Json数据,可以让我们使用很少的代码就把格式化好的json数据转换成程序可识别的对象或者属性,同时delphi中也有这样的组件来实现此功能,即Isuper ...

  8. C语言实现将日期、时间保存到文本文件中

    今天突然兴起,看来一下C语言的文件操作,以前在学习的时候,总是一带而过,觉得没有什么用处:但是现在看来,还真的没有什么用处,最后,我现在还有用到,当然这只是我的个人认为,并不能说明什么,在此我将自己写 ...

  9. kubernetes deployment升级和回滚

    a.创建deployment pod kubectl run mynginx --image=docker.io/nginx: --record 准备svc文件 apiVersion: v1 kind ...

  10. python day06

    深浅拷贝 1.值拷贝 ls1 = [1,2,3] ls2 = ls1 #ls2直接把栈区里ls1存的地址拿过来,也指向堆区里列表的id #原列表发生ls1改变(不是重新赋值),ls2也跟着发生改变 2 ...