Description

对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?

Input

一个数N(1<=N<=2,000,000,000)。

Output

不超过N的最大的反质数。

Sample Input

1000

Sample Output

840

题解

拿到题首先准确无误地题干看错,以为是质因数个数...

这道题其实还是很好做的。首先我们要知道一个定理:

对任一整数$a>1$,有$a={p_1}^{a_1}{p_2}^{a_2}…{p_n}^{a_n}$,其中$p_1<p_2<…<p_n$均为素数,而$a_1$,$a_2$…,$a_n$是正整数。

$a$的正约数个数为:$(1+a_1)(1+a_2)…(1+a_n)$

我们很容易得到一个结论:由于这道题实际上是求$1~n$中因数最多的数中最小的。

从反素数的定义中可以看出两个性质:

(1)一个反素数的所有质因子必然是从$2$开始的连续若干个质数,因为反素数是保证约数个数为的这个数尽量小

(2)同样的道理,如果,那么必有

我们发现:

$2×3×5×7×11×13×17×19×23×29$

$=6,469,693,230>2,000,000,000$

显然只要用这十个数进行讨论就好了。

我们发现之前那个式子中$p$是不好讨论的,那么我们就用搜索实现了。

如果还是不太理解->戳我<-

 #include<map>
#include<set>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<string>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define RE register
#define IL inline
using namespace std;
const LL prime[]={,,,,,,,,,}; LL n,ans,maxn; void Dfs(LL pn,LL cnt,LL cen); int main()
{
scanf("%lld",&n);
Dfs(,,);
printf("%lld\n",ans);
return ;
} void Dfs(LL pn,LL cnt,LL cen)
{
if (pn>maxn) maxn=pn,ans=cnt;
if (pn==maxn&&cnt<ans) ans=cnt;
if (cen==) return;
LL a=;
for (RE LL i=;;i++)
{
if (cnt*a>n) break;
Dfs(pn*(i+),cnt*a,cen+);
a*=prime[cen];
}
}

[HAOI 2007]反素数ant的更多相关文章

  1. [BZOJ 1053] [HAOI 2007] 反素数ant

    题目链接:BZOJ 1053 想一想就会发现,题目让求的 1 到 n 中最大的反素数,其实就是 1 到 n 中因数个数最多的数.(当有多于一个的数的因数个数都为最大值时,取最小的一个) 考虑:对于一个 ...

  2. bzoj 1053 [ HAOI 2007 ] 反素数ant ——暴搜

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 试图打表找规律,但无果... 看TJ了,暴搜: 注意参数 w 是 long long. ...

  3. 【BZOJ】【1053】【HAOI2007】反素数ant

    搜索 经典搜索题目(其实是蒟蒻只会搜……vfleaking好像有更优秀的做法?) 枚举质数的幂,其实深度没多大……因为$2^32$就超过N了……而且质数不能取的太大,所以不会爆…… /******** ...

  4. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  5. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

  6. 【BZOJ】1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...

  7. bzoj 1053: [HAOI2007]反素数ant 搜索

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1497  Solved: 821[Submit][Sta ...

  8. BZOJ 1053 [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1948  Solved: 1094[Submit][St ...

  9. 1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3480  Solved: 2036[Submit][St ...

随机推荐

  1. Beta冲刺NO.1

    Beta冲刺 第一天 1. 昨天的困难 由于今天还是第一天,所以暂时没有昨天的困难. 2. 今天解决的进度 潘伟靖: 对代码进行了review 1.将某些硬编码改为软编码 2.合并了一些方法,简化代码 ...

  2. 作业07-Java GUI编程

    1. 本周学习总结 1.1 思维导图:Java图形界面总结 1.2 可选:使用常规方法总结其他上课内容. 关于事件.事件源.事件监听器的总结: 事件:用户在GUI上进行的操作,如鼠标单击.输入文字.关 ...

  3. GNU/Hurd笔记整理

    patch 0 关于文件锁支持的解决方案,大部分是由Neal Walfield在2001年完成的.这些补丁由Marcus Brinkmann发表,随后被Michael Banck于2002年修改了部分 ...

  4. 基础篇 - SQL 的约束

    基础篇 - SQL 的约束       约束 一.实验简介 约束是一种限制,它通过对表的行或列的数据做出限制,来确保表的数据的完整性.唯一性.本节实验将在实践操作中熟悉 MySQL 中的几种约束. 二 ...

  5. stringify 字符串转化成json方法

    参照原文:http://www.cnblogs.com/damonlan/ http://www.jb51.net/article/29893.htm stringify的作用主要是序列化对象(转化为 ...

  6. VS2013 重装 无法打开项目

    今天遇到的奇葩BUG,耗时我一下午,现在跟大家说道说道. 今天重装系统,让各种开发环境开发工具自然要重装一次,最后装完VS2013,然后刚好客户打电话要改点东西,然后我就双击项目准备打开改,然后奇葩来 ...

  7. JAVA_SE基础——71.Random类制作随机验证码

    public class Demo5 { public static void main(String[] args) { char[] arr={'s','b','g','h','a','c'}; ...

  8. JAVA_SE基础——46.引用数据类型变量.值交换[独家深入解析]

    需求:定义一个函数交换数组中两个元素的位置. code 1: import java.util.*; class Demo3 { public static void main(String[] ar ...

  9. php的set_time_limit()函数

    set_time_limit(0); 括号里边的数字是执行时间,如果为零说明永久执行直到程序结束,如果为大于零的数字,则不管程序是否执行完成,到了设定的秒数,程序结束. 一个简单的例子,在网页里显示1 ...

  10. C++ 异常小记

    catch必定使用拷贝构造函数 如下代码编译不通过,因为拷贝构造被标记delete #include <stdexcept> #include <cstdlib> #inclu ...