【BZOJ5250】[九省联考2018]秘密袭击(动态规划)

题面

BZOJ

洛谷

给定一棵树,求其所有联通块的权值第\(k\)大的和。

题解

整个\(O(nk(n-k))\)的暴力剪剪枝就给过了。。。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAX 1700
#define MOD 64123
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,K,W,ans,a[MAX],b[MAX];
int f[MAX][MAX],sz[MAX],tmp[MAX];
void dfs(int u,int ff)
{
f[u][b[u]]=1;sz[u]=b[u];
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
dfs(v,u);
for(int j=0;j<=sz[u]&&j<=K;++j)
for(int k=0;k<=sz[v]&&k<=K;++k)
tmp[j+k]=(tmp[j+k]+1ll*f[u][j]*f[v][k]%MOD);
sz[u]+=sz[v];
for(int j=0;j<=sz[u];++j)f[u][j]=(f[u][j]+tmp[j])%MOD,tmp[j]=0;
}
}
int main()
{
n=read();K=read();W=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
for(int i=1;i<=n;++i)
{
int sum=0;
for(int j=1;j<=n;++j)
if(a[j]>a[i]||(a[j]==a[i]&&j>=i))b[j]=1,++sum;
else b[j]=0;
if(sum<K)continue;
memset(f,0,sizeof(f));
dfs(i,0);
ans=(ans+1ll*a[i]*f[i][K])%MOD;
}
printf("%d\n",ans);
return 0;
}

【BZOJ5250】[九省联考2018]秘密袭击(动态规划)的更多相关文章

  1. [BZOJ5250][九省联考2018]秘密袭击(DP)

    5250: [2018多省省队联测]秘密袭击 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3  Solved: 0[Submit][Status][D ...

  2. [九省联考2018]秘密袭击coat

    [九省联考2018]秘密袭击coat 研究半天题解啊... 全网几乎唯一的官方做法的题解:链接 别的都是暴力.... 要是n=3333暴力就完了. 一.问题转化 每个联通块第k大的数,直观统计的话,会 ...

  3. P4365 [九省联考2018]秘密袭击coat

    $ \color{#0066ff}{ 题目描述 }$ Access Globe 最近正在玩一款战略游戏.在游戏中,他操控的角色是一名C 国士 兵.他的任务就是服从指挥官的指令参加战斗,并在战斗中取胜. ...

  4. 并不对劲的复健训练-bzoj5250:loj2473:p4365:[九省联考2018]秘密袭击

    题目大意 有一棵\(n\)(\(n\leq 1666\))个点的树,有点权\(d_i\),点权最大值为\(w\)(\(w\leq 1666\)).给出\(k\)(\(k\leq n\)),定义一个选择 ...

  5. 解题:九省联考2018 秘密袭击CoaT

    题面 按照*Miracle*的话来说,网上又多了一篇n^3暴力的题解 可能是因为很多猫题虽然很好,但是写正解性价比比较低? 直接做不可做,转化为统计贡献:$O(n)$枚举每个权值,直接统计第k大大于等 ...

  6. [九省联考 2018]秘密袭击coat

    Description 题库链接 给出一棵 \(n\) 个点的树,每个点有点权.求所有联通块的权值 \(k\) 大和,对 \(64123\) 取模. \(1\leq n,k\leq 1666\) So ...

  7. [LOJ #2473] [九省联考2018] 秘密袭击coat

    题目链接 洛谷. LOJ,LOJ机子是真的快 Solution 我直接上暴力了...\(O(n^2k)\)洛谷要\(O2\)才能过...loj平均单点一秒... 直接枚举每个点为第\(k\)大的点,然 ...

  8. LuoguP4365 [九省联考2018]秘密袭击

    https://zybuluo.com/ysner/note/1141136 题面 求一颗大小为\(n\)的树取联通块的所有方案中,第\(k\)个数之和. \(n\leq1,667,k\leq n\) ...

  9. luogu P4365 [九省联考2018]秘密袭击coat

    luogu 这里不妨考虑每个点的贡献,即求出每个点在多少个联通块中为第\(k\)大的(这里权值相同的可以按任意顺序排大小),然后答案为所有点权值\(*\)上面求的东西之和 把比这个点大的点看成\(1\ ...

随机推荐

  1. 未能加载文件或程序集&quot;Newtonsoft.Json, Version=4.5.0.0

    这问题遇到好几次了,重新更改了引用都不好使,有的时候版本改成一致就好了,但是有的地方你不知道在哪里用了就不好排查,所性在config里面加个配置让程序运行的时候去处理得了~ 很实用,放在configu ...

  2. 项目笔记-SC01

    项目启动已有两周,从分析需求到系统设计,文档性工作比较多,只是文档参考比较少,相对的标准就不好界定了. 计划开发时间理论上是按部就班的,没什么变化,可能真正进入开发阶段才会遇到一些问题吧,有些问题就是 ...

  3. HDU 2006 求奇数的乘积

    http://acm.hdu.edu.cn/showproblem.php?pid=2006 Problem Description 给你n个整数,求他们中所有奇数的乘积.   Input 输入数据包 ...

  4. [学习]UX 测试 5S 范围

    最近被UX测试搞的死去活来的 郁闷坏了. 豆瓣上面有一个介绍: 好的框架总是简洁的. Strategy - Scope - Structure - Skeleton - Surface五个层面,用bo ...

  5. Sqlserver tablediff的简单使用

    1. 先列举一下自己简单的比较语句 tablediff -sourceserver 10.24.160.73 -sourcedatabase cwbasemi70 -sourceschema lcmi ...

  6. [转帖]PAT 计算机程序设计能力考试

    PAT 计算机程序设计能力考试 https://blog.csdn.net/bat67/article/details/52134211 [官方简介] 计算机程序设计能力考试(Programming ...

  7. laravel实现批量添加数据

    在使用laravel eloquent进行数据库操作的时候惊讶的发现这货居然不支持批量添加,看到网上很多人在循环里进行数据库插入操作来实现批量添加,我想说这样做是很损失性能滴!好在框架的DB门面里的i ...

  8. 建议2---编写pythonic代码

    (1)要避免劣化代码 1)避免只用大小写来区分不同的对象.如a是一个数值类型变量,A是String类型,虽在编码过程容易区分二者的含义,但这样做毫无益处,它不会给其他阅读代码的人带来多少便利. 2)避 ...

  9. Storm原理

    zookeeper是对称结构

  10. windos安装maven

    1.下载好maven压缩包,并解压到相应位置,本次安装在D: 2.配置环境变量 MAVEN_HOME=D:\apache-maven-3.0.5 path=%MAVEN_HOME% 3.生成maven ...