题目链接:atcoder

大意:有\(n\)个骰子,每个骰子上面有\(k\)个数,分别是\(1\text ~ k\),现在求\(\forall i\in[2...2k]\),求出有多少种骰子点数的组合方式使得任意两个骰子的点数之和不等于\(i\),注意不考虑顺序

分析

对每个\(i\)计算答案

我们知道,如果\(1\leq j \leq i\)且\(1\leq i-j \leq i\)那么\(j\)和\(i-j\)最多只能出现一个

我们对于每个\(i\)计算出有多少组\((j,i-j)\)满足上面的限制条件,记为\(cnt\)

那么对于剩下的\(k-2*cnt\)的取值便变得可以出现也可以不出现了

所以骰子点数的出现情况的方案数就是

\[\sum_{q=0}^{cnt}C_{cnt}^q*2^q
\]

接下来考虑对于每一种出现情况的组合数

假设我们当前选了\(q\)个限制组中的元素,我们可以列出下面这样一个方程

\[x_1+x_2+\cdots+x_q+y_1+y_2+\cdots+y_{k-2*cnt}=n
\]

其中\(x1,x2,\cdots,x_q\)表示限制组中元素的出现次数,\(y_1,y_2,\cdots,y_{k-2*cnt}\)表示非限制组中的元素的出现次数

那么依照上面的假设就有\(x_i> 0,y_i\geq 0\),求该方程的解的组数

将方程转化为

\[x_1+x_2+\cdots+x_{cnt}+(y_1+1)+(y_2+1)+\cdots+(y_{k-2*cnt}+1)=n+(k-2*cnt)
\]

那么原问题就变成了一个经典的求方程正整数解的问题了,答案为\(C_{n+k-2*cnt-1}^{k-cnt-1}\)

将两者乘起来即可

注意当\(i\)是偶数的时候,会出现\((i/2,i/2)\)这样的一组无意义的限制组,我们可以强制令其取或不取(取最多也只有1个),然后和上面一样的求解

时间复杂度\(O(n^2)\)

#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
using namespace std;
const int maxd=998244353,N=100000;
const double pi=acos(-1.0);
typedef long long ll;
int n,k,c[4010][4010],bin[4010]; int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
} void init()
{
k=read();n=read();
int i,j;
c[0][0]=1;
for (i=1;i<=4000;i++)
{
c[i][0]=1;
for (j=1;j<=i;j++)
c[i][j]=((ll)c[i-1][j]+c[i-1][j-1])%maxd;
}
bin[0]=1;
for (i=1;i<=4000;i++) bin[i]=(bin[i-1]*2)%maxd;
//for (i=1;i<=6;i++) cout << bin[i] << " ";cout << endl;
} ll calc(int x,int y,int z)
{
if (y<0) return 0;
//cout << x << " " << y << " " << z << endl;
int i;ll ans=0;
for (i=0;i<=x&&i<=z;i++)
{
if (((i+y-1)>=0) && ((i+y-1)<=(z+y-1)))
{
//cout << i << " " << x << " " << y << " " << z << endl;
ans=(ans+((1ll*c[x][i]*bin[i])%maxd*c[z+y-1][i+y-1])%maxd)%maxd;
}
}
return ans;
} void work()
{
int i,j;
for (i=2;i<=k*2;i++)
{
ll ans=0;int cnt=0;
for (j=1;j<=k;j++)
{
int tmp=i-j;
if ((tmp<=k) && (tmp>=1)) cnt++;
}
//cout << i << " " << cnt << endl;
if (i&1)
ans=calc(cnt/2,k-cnt,n);
else
ans=(calc((cnt-1)/2,k-cnt,n)+calc((cnt-1)/2,k-cnt,n-1))%maxd;
printf("%lld\n",ans);
}
} int main()
{
init();
work();
return 0;
}

AtCoder Regular Contest 102 E Stop. Otherwise...的更多相关文章

  1. AtCoder Regular Contest 102

    AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...

  2. AtCoder Regular Contest 102 (ARC102) E - Stop. Otherwise... 排列组合

    原文链接https://www.cnblogs.com/zhouzhendong/p/ARD102E.html 题目传送门 - ARC102E 题意 有 $n$ 个取值为 $[1,k]$ 的骰子,对于 ...

  3. AtCoder Regular Contest 102 (ARC102) D All Your Paths are Different Lengths 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/ARC102D.html 题目传送门 - ARC102D 题意 给定 $L$,请你构造一个节点个数为 $n$ ,边 ...

  4. AtCoder Regular Contest 102 D - All Your Paths are Different Lengths

    D - All Your Paths are Different Lengths 思路: 二进制构造 首先找到最大的t,使得2^t <= l 然后我们就能构造一种方法使得正好存在 0 到 2^t ...

  5. 2018.09.02 Atcoder Regular Contest 102简要题解

    比赛传送门 T1 Triangular Relationship 分析之后发现有两种情况: 1. n为奇数,那么所有数都是k的倍数. 2. n为偶数,那么所有数都是k/2的倍数. 然后就可以愉快A题了 ...

  6. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  7. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  8. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  9. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

随机推荐

  1. CSS3下的渐变文字效果实现

    如下,第一种方法已实践 一.方法一:借助mask-image属性 可以狠狠地点击这里:CSS3下的渐变文字效果方法一demo 如果您手头上的浏览器是Chrome或是Safari,则您可以在demo页面 ...

  2. 解决CPC撰写文档报错问题“无法获取“AxforApplication”控件的窗口句柄。不支持无窗口的 ActiveX 控件”

    最近公司需要把官方CPC电子申请移植到项目中,在移植完成后,撰写文档总是出现“无法获取“AxforApplication”控件的窗口句柄.不支持无窗口的 ActiveX 控件”,另楼主头疼很久,网上寥 ...

  3. siteServer创建网站中Mysql和SqlServer的区别

    mysql中使用本地数据库时使用:localhost sqlserver使用本地数据库时使用:(local)

  4. mysql数据从windows导出,再导入到linux

    从windows导出时,要注意字符集最好和linux的一致,如linux字符集一般为utf8,则导出时可以加上参数--default-character-set=utf8指定字符集,然后导入到linu ...

  5. vue双向数据绑定的简单实现

    vue双向数据绑定的简单实现 参考教程:链接 <!DOCTYPE html> <html lang="en"> <head> <meta ...

  6. JEECG SSO kisso

    kisso: java 基于 Cookie 的 SSO 中间件 kisso https://gitee.com/baomidou/kisso kisso首页.文档和下载 - 基于 Cookie 的 S ...

  7. WCF使用相关

    1.不显示WCF服务主机 在WCF项目属性中的WCF选项卡总关闭下图的选项 2.在其他项目中承载WCF服务 其他加载的操作一致,需要把WCF的endpoint和behavior节点复制到 启动服务的那 ...

  8. CMD管道命令使用

    Windows netstat 查看端口.进程占用 开始--运行--cmd 进入命令提示符 输入netstat -ano 即可看到所有连接的PID 之后在任务管理器中找到这个PID所对应的程序如果任务 ...

  9. React Native之(支持iOS与Android)自定义单选按钮(RadioGroup,RadioButton)

    React Native之(支持iOS与Android)自定义单选按钮(RadioGroup,RadioButton) 一,需求与简单介绍 在开发项目时发现RN没有给提供RadioButton和Rad ...

  10. Laravel设置软删除及其恢复系列操作

    软删除及其相关实现 在模型类中要使用SoftDeletestrait并设置$date属性数组 <?php namespace App\Models; use Illuminate\Databas ...