Codeforces Round #449 Div. 1
B:注意到nc/2<=m,于是以c/2为界决定数放在左边还是右边,保证序列满足性质的前提下替换掉一个数使得其更靠近边界即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 1000000007
#define N 1010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,c,a[N],head,tail;
signed main()
{
n=read(),m=read(),c=read();head=1,tail=n;
while (head<=tail)
{
int x=read();
if (x<=c/2)
{
bool flag=0;
for (int i=1;i<head;i++) if (a[i]>x) {cout<<i<<endl;a[i]=x;flag=1;break;}
if (!flag) cout<<head<<endl,a[head++]=x;
}
else
{
bool flag=0;
for (int i=n;i>tail;i--) if (a[i]<x) {cout<<i<<endl;a[i]=x;flag=1;break;}
if (!flag) cout<<tail<<endl,a[tail--]=x;
}
}
for (int i=1;i<=n;i++) cout<<a[i]<<' ';cout<<endl;
return 0;
//NOTICE LONG LONG!!!!!
}
D:相当于求有多少个-1 0 1构成的序列满足前缀和始终不小于0且总和在[l,r]中。这个前缀和限制非常容易想到卡特兰数,考虑类似的推式子方法,写出dp式子然后造一个网格图,如果没有前缀和限制只要暴力枚举1的个数算一下组合数即可,而所有不满足前缀和限制的方案与从边界走过来的方案一一对应,于是减掉就可以了(具体见NOI2018冒泡排序?)。于是只剩下模数不是质数的问题,对其分解质因数,然后阶乘及其逆元拆成两部分,与模数互质部分直接处理,剩下的记录每个质因子幂次做前缀和即可求组合数。最坑的一点大概是因为模数可达2e9无法避免爆int。为什么这个小水题过的人这么少
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define int long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,P,l,r,fac[N],inv[N],sum[N][30],p[30],t;
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
void exgcd(int &x,int &y,int a,int b)
{
if (b==0)
{
x=1,y=0;
return;
}
exgcd(x,y,b,a%b);
int t=x;x=y;y=t-a/b*x;
}
int Inv(int a)
{
int x,y;
exgcd(x,y,a,P);
return (x%P+P)%P;
}
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int C(int n,int m)
{
if (m>n) return 0;
int ans=1ll*fac[n]*inv[m]%P*inv[n-m]%P;
for (int i=1;i<=t;i++) ans=1ll*ans*ksm(p[i],sum[n][i]-sum[m][i]-sum[n-m][i])%P;
return ans;
}
int calc(int m)
{
int ans=0;
for (int i=0;i<=n;i++)
inc(ans,1ll*C(n,i)*C(n-i,m+i)%P);
return ans;
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
#endif
n=read(),P=read(),l=read(),r=read();
int u=P;
for (int i=2;i*i<=u;i++)
if (u%i==0) {p[++t]=i;while (u%i==0) u/=i;}
if (u>1) p[++t]=u;fac[0]=1;
for (int i=1;i<=n;i++)
{
int x=i;
for (int j=1;j<=t;j++)
{
sum[i][j]=sum[i-1][j];
while (x%p[j]==0) x/=p[j],sum[i][j]++;
}
fac[i]=1ll*fac[i-1]*x%P;
}
for (int i=0;i<=n;i++) inv[i]=Inv(fac[i]);
cout<<((calc(l)+calc(l+1)-calc(r+2)-calc(r+1))%P+P)%P;
return 0;
//NOTICE LONG LONG!!!!!
}
布星lxl题一点都不会。
Codeforces Round #449 Div. 1的更多相关文章
- Codeforces Round #449 (Div. 2)
Codeforces Round #449 (Div. 2) https://codeforces.com/contest/897 A #include<bits/stdc++.h> us ...
- Codeforces Round #449 (Div. 2)ABCD
又掉分了0 0. A. Scarborough Fair time limit per test 2 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #449 (Div. 2) B. Chtholly's request【偶数位回文数】
B. Chtholly's request time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #449 (Div. 2)-897A.Scarborough Fair(字符替换水题) 897B.Chtholly's request(处理前一半) 897C.Nephren gives a riddle(递归)
A. Scarborough Fair time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #449 (Div. 2) D. Ithea Plays With Chtholly
题目链接 交互题. 题意:给你三个数n,m,k.让你完成至多m次互动,每次给你一个q,让你从n个位置选一个位置放这个数,覆盖已经放过的数.让你再m次使得n个位置的数不递减,达到直接退出. 解法:暴力, ...
- Codeforces Round #449 (Div. 1) Willem, Chtholly and Seniorious (ODT维护)
题意 给你一个长为 \(n\) 的序列 \(a_i\) 需要支持四个操作. \(1~l~r~x:\) 把 \(i \in [l, r]\) 的 \(a_i\) 加 \(x\) . \(2~l~r~x: ...
- Codeforces Round #449 (Div. 1)C - Willem, Chtholly and Seniorious
ODT(主要特征就是推平一段区间) 其实就是用set来维护三元组,因为数据随机所以可以证明复杂度不超过O(NlogN),其他的都是暴力维护 主要操作是split,把区间分成两个,用lowerbound ...
- Codeforces Round #449 (Div. 2) C. DFS
C. Nephren gives a riddle time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #449 (Div. 2) A. Scarborough Fair【多次区间修改字符串】
A. Scarborough Fair time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
随机推荐
- Spring使用MappingJackson2MessageConverter发送接收ActiveMQ消息
一.Spring使用JmsTemplate简化对JMS的访问 在JAVA对JMS队列访问中,使用默认的JMS支持将存在大量的检查型异常.通过Spring的支持,可以将所有的JMS的检查型异常转换为运行 ...
- java使用Map做缓存你真的用对了吗?弱引用WeakHashMap了解一下
目录 关于缓存我们应该考虑什么?-intsmaze WeakHashMap弱引用-intsmaze 线程安全问题-intsmaze Collections-intsmaze ThreadLocal-i ...
- flask登录插件 flask-login
Flask-Login为Flask提供了用户会话管理,它处理了日常的登入登出且长时间记住用户的会话 使用: 1.配置,初始化 LoginManager 创建实例 loginManger = Login ...
- 1、Django系列之web应用与http协议
第1节:最简单的web应用程序 Web应用程序指供浏览器访问的程序,通常也简称为Web应用.应用程序有两种模式C/S.B/S.C/S是客户端/服务器端程序,也就是说这类程序一般独立运行.而B/S就是浏 ...
- docker环境搭建
参考地址:https://www.imooc.com/article/details/id/25228 操作系统Centos7 1.替换yum源为阿里云yum源: //备份yum源 mv /etc/y ...
- Python-每日习题-0009-time
题目:暂停一秒输出 程序分析:使用 time 模块的 sleep() 函数. import time for i in range(4): print(str(int(time.time()))[-2 ...
- 写了一个Windows API Viewer,提供VBA语句的导出功能。提供两万多个API的MSDN链接内容的本地查询
始出处:http://www.cnblogs.com/Charltsing/p/APIViewer.html QQ:564955427,QQ群:550672198 世面上的API Viewer已经不少 ...
- js总结:onClick=“return confirm()”实现确认以及取消表单的提交
- laravel get和all区别
get ,all 都可以获取到模型 all 是直接获取所有,get 是在添加了许多约束之后获取模型,get前面如果不加约束条件的话,效果与all等同
- Oracle RMAN备份与还原
RMAN在数据库服务器的帮助下实现数据库文件.控制文件.数据库文件与控制文件的映像副本.归档日志文件.数据库服务器参数文件的备份. RMAN的特点: (1) 支持增量备份:传统的exp与expdp备份 ...