BZOJ2521[Shoi2010]最小生成树——最小割
题目描述
.jpg)
当然啦,这些都不是今天需要你解决的问题。Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中。为了使得AB边一定在最小生成树中,你可以对这个无向图进行操作,一次单独的操作是指:先选择一条图中的边 P1P2,再把图中除了这条边以外的边,每一条的权值都减少1。如图 4所示就是一次这样的操作:
.jpg)
输入
输出
输出文件只有一行,这行只有一个整数,即,使得标号为Lab边一定出现最小生成树中的最少操作次数。
样例输入
1 2 2
1 3 2
1 4 3
2 3 2
2 4 4
3 4 5
样例输出
提示
第1个样例就是问题描述中的例子。
1<=n<=500,1<=M<=800,1<=D<10^6
根据$kruskal$的原理,要使一条边能被选取,那么就要保证将边权小于等于这条边的所有边加入到图中后这条边的两端不连通。题目中的操作非常麻烦,我们将它看作是将选定边的边权$+1$,其他边的边权不变。那么就要使一些原本边权小于等于指定边的边的边权比指定边大来使指定边两端点不连通。我们可以建立最小割模型,将边权小于等于指定边的边加入图中(建双向边),流量为$d[lab]-d[i]+1$,表示需要操作这么多次使这条边从图中删除(当边权比指定边大时,这条边就不在考虑范围内了,可以看做是将这条边删除)。源汇点就是指定边的两端点,那么就相当于割掉一些边使源汇点不连通且使割掉边的边权和最小(也就是最小割模型)。利用最小割等于最大流定理直接求最大流即可。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int head[600];
int next[4000];
int to[4000];
int val[4000];
int tot=1;
int n,m;
int S,T;
int id;
int q[600];
int d[600];
int u[1000],v[1000],a[1000];
void add(int x,int y,int z)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=z;
next[++tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
memset(d,-1,sizeof(d));
memset(q,0,sizeof(q));
int l=0,r=0;
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
l++;
for(int i=head[now];i;i=next[i])
{
if(val[i]&&d[to[i]]==-1)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
}
return d[T]==-1?false:true;
}
int dfs(int x,int maxflow)
{
if(x==T)
{
return maxflow;
}
int used=0;
int nowflow;
for(int i=head[x];i;i=next[i])
{
if(val[i]&&d[to[i]]==d[x]+1)
{
nowflow=dfs(to[i],min(maxflow-used,val[i]));
val[i]-=nowflow;
val[i^1]+=nowflow;
used+=nowflow;
if(nowflow==maxflow)
{
return maxflow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
int dinic()
{
int res=0;
while(bfs(S,T))
{
res+=dfs(S,0x3f3f3f3f);
}
return res;
}
int main()
{
scanf("%d%d%d",&n,&m,&id);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u[i],&v[i],&a[i]);
}
S=u[id],T=v[id];
for(int i=1;i<=m;i++)
{
if(a[i]<=a[id]&&i!=id)
{
add(v[i],u[i],a[id]-a[i]+1);
add(u[i],v[i],a[id]-a[i]+1);
}
}
printf("%d",dinic());
}
BZOJ2521[Shoi2010]最小生成树——最小割的更多相关文章
- BZOJ2521:[SHOI2010]最小生成树(最小割)
Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可 ...
- 【BZOJ2521】[Shoi2010]最小生成树 最小割
[BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算 ...
- 【BZOJ-2521】最小生成树 最小割
2521: [Shoi2010]最小生成树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 415 Solved: 242[Submit][Statu ...
- BZOJ.2521.[SHOI2010]最小生成树(最小割ISAP/Dinic)
题目链接 一条边不变其它边减少可以看做一条边增加其它边不变. 假设要加的边lab为(A->B,v),那么肯定是要使除这条边外,A->B的每条路径上的最小权值都\(>v\),这样在连通 ...
- BZOJ2521 最小生成树 最小割
5.26 T2:最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法 ...
- BZOJ2561最小生成树——最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- BZOJ 2561: 最小生成树(最小割)
U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------- ...
- 【BZOJ2561】最小生成树 最小割
[BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...
- bzoj2521 [Shoi2010]最小生成树
[Shoi2010]最小生成树 Time Limit: 10 Sec Memory Limit: 128 MB Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出 ...
随机推荐
- [LOJ#2386]. 「USACO 2018.01 Platinum」Cow at Large[点分治]
题意 题目链接 分析 假设当前的根为 rt ,我们能够在奶牛到达 \(u\) 之时拦住它,当且仅当到叶子节点到 \(u\) 的最短距离 \(mn_u \le dis_u\) .容易发现,合法的区域是许 ...
- 2018年JavaScript现状报告
前言 JavaScript(后面统称JS)在过去五年得到飞速地增长,早期JS实现类似微博的“点赞”这样的功能都需要刷新一次页面. 后来开发者通过JS来制作SPA(单页面应用程序),在浏览器加载一次,后 ...
- .NET 框架 Microsoft .NET Framework (更新至.NET Framework4.8)
https://dotnet.microsoft.com/download/dotnet-framework 产品名称 离线安装包 .NET Framework 4.8 点击下载 .NET Frame ...
- 追源索骥:透过源码看懂Flink核心框架的执行流程
li,ol.inline>li{display:inline-block;padding-right:5px;padding-left:5px}dl{margin-bottom:20px}dt, ...
- js canvas图片压缩
function preview_picture(pic){ var r=new FileReader(); r.readAsDataURL(pic); r.onload=function(e){ d ...
- 使用 Drools 和 JPA & Drools show case in docker hub
使用 Drools 和 JPA 实现持续的实时数据分析https://www.ibm.com/developerworks/cn/java/j-drools5/index.html Drools - ...
- linux的nohup命令
linux的nohup命令的用法. - runfox545 - 博客园https://www.cnblogs.com/allenblogs/archive/2011/05/19/2051136.htm ...
- golang操作mysql使用总结
前言 Golang 提供了database/sql包用于对SQL数据库的访问, 作为操作数据库的入口对象sql.DB, 主要为我们提供了两个重要的功能: sql.DB 通过数据库驱动为我们提供管理底层 ...
- 《Effective C++》设计与声明:条款18-条款25
条款18:让接口容易被正确使用,不容易被误用 注意使用const,explicit,shared_ptr等来限制接口. 必要时可以创建一些新的类型,限制类型操作,束缚对象等. 注意保持接口的一致性,且 ...
- spring初始化bean时执行某些方法完成特定的初始化操作
在项目中经常会在容器启动时,完成特定的初始化操作,如资源文件的加载等. 一 实现的方式有三种: 1.使用@PostConstruct注解,该注解作用于void方法上 2.在配置文件中配置init-me ...