BZOJ2521[Shoi2010]最小生成树——最小割
题目描述
.jpg)
当然啦,这些都不是今天需要你解决的问题。Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中。为了使得AB边一定在最小生成树中,你可以对这个无向图进行操作,一次单独的操作是指:先选择一条图中的边 P1P2,再把图中除了这条边以外的边,每一条的权值都减少1。如图 4所示就是一次这样的操作:
.jpg)
输入
输出
输出文件只有一行,这行只有一个整数,即,使得标号为Lab边一定出现最小生成树中的最少操作次数。
样例输入
1 2 2
1 3 2
1 4 3
2 3 2
2 4 4
3 4 5
样例输出
提示
第1个样例就是问题描述中的例子。
1<=n<=500,1<=M<=800,1<=D<10^6
根据$kruskal$的原理,要使一条边能被选取,那么就要保证将边权小于等于这条边的所有边加入到图中后这条边的两端不连通。题目中的操作非常麻烦,我们将它看作是将选定边的边权$+1$,其他边的边权不变。那么就要使一些原本边权小于等于指定边的边的边权比指定边大来使指定边两端点不连通。我们可以建立最小割模型,将边权小于等于指定边的边加入图中(建双向边),流量为$d[lab]-d[i]+1$,表示需要操作这么多次使这条边从图中删除(当边权比指定边大时,这条边就不在考虑范围内了,可以看做是将这条边删除)。源汇点就是指定边的两端点,那么就相当于割掉一些边使源汇点不连通且使割掉边的边权和最小(也就是最小割模型)。利用最小割等于最大流定理直接求最大流即可。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int head[600];
int next[4000];
int to[4000];
int val[4000];
int tot=1;
int n,m;
int S,T;
int id;
int q[600];
int d[600];
int u[1000],v[1000],a[1000];
void add(int x,int y,int z)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=z;
next[++tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
memset(d,-1,sizeof(d));
memset(q,0,sizeof(q));
int l=0,r=0;
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
l++;
for(int i=head[now];i;i=next[i])
{
if(val[i]&&d[to[i]]==-1)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
}
return d[T]==-1?false:true;
}
int dfs(int x,int maxflow)
{
if(x==T)
{
return maxflow;
}
int used=0;
int nowflow;
for(int i=head[x];i;i=next[i])
{
if(val[i]&&d[to[i]]==d[x]+1)
{
nowflow=dfs(to[i],min(maxflow-used,val[i]));
val[i]-=nowflow;
val[i^1]+=nowflow;
used+=nowflow;
if(nowflow==maxflow)
{
return maxflow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
int dinic()
{
int res=0;
while(bfs(S,T))
{
res+=dfs(S,0x3f3f3f3f);
}
return res;
}
int main()
{
scanf("%d%d%d",&n,&m,&id);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u[i],&v[i],&a[i]);
}
S=u[id],T=v[id];
for(int i=1;i<=m;i++)
{
if(a[i]<=a[id]&&i!=id)
{
add(v[i],u[i],a[id]-a[i]+1);
add(u[i],v[i],a[id]-a[i]+1);
}
}
printf("%d",dinic());
}
BZOJ2521[Shoi2010]最小生成树——最小割的更多相关文章
- BZOJ2521:[SHOI2010]最小生成树(最小割)
Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可 ...
- 【BZOJ2521】[Shoi2010]最小生成树 最小割
[BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算 ...
- 【BZOJ-2521】最小生成树 最小割
2521: [Shoi2010]最小生成树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 415 Solved: 242[Submit][Statu ...
- BZOJ.2521.[SHOI2010]最小生成树(最小割ISAP/Dinic)
题目链接 一条边不变其它边减少可以看做一条边增加其它边不变. 假设要加的边lab为(A->B,v),那么肯定是要使除这条边外,A->B的每条路径上的最小权值都\(>v\),这样在连通 ...
- BZOJ2521 最小生成树 最小割
5.26 T2:最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法 ...
- BZOJ2561最小生成树——最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- BZOJ 2561: 最小生成树(最小割)
U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------- ...
- 【BZOJ2561】最小生成树 最小割
[BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...
- bzoj2521 [Shoi2010]最小生成树
[Shoi2010]最小生成树 Time Limit: 10 Sec Memory Limit: 128 MB Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出 ...
随机推荐
- Java性能优化之使用NIO提升性能(Buffer和Channel)
在软件系统中,由于IO的速度要比内存慢,因此,I/O读写在很多场合都会成为系统的瓶颈.提升I/O速度,对提升系统整体性能有着很大的好处. 在Java的标准I/O中,提供了基于流的I/O实现,即Inpu ...
- Spring如何加载log4j配置文件
今天有朋友在群里问了这个问题,于是写了这篇文章进行整理. 问题如下: 在项目中添加了log4j.properties配置文件,并没有在Spring配置文件中配置,也没有在web.xml中配置,但是代码 ...
- Rimworld单人生存记
开局什么也没有,第一天按原来的墙造了个卧室差不多就完了,可见工作效率之低.花了三四天才种好水稻+草莓,做了短弓,挖了一些钢铁,造了燃料炉灶和屠宰台.第五天来了个人,我用短弓和他打,问题是远程最多打一下 ...
- 【评分】Beta 答辩总结
[评分]Beta 答辩总结 总结 按时交 - 有分 晚交 - 0分 迟交一周以上 - 倒扣本次作业分数 抄袭 - 倒扣本次作业分数 由于前期不够重视,到beta评分才发现有5组的代码提交仅由一人&qu ...
- Divide by three, multiply by two CodeForces - 977D (思维排序)
Polycarp likes to play with numbers. He takes some integer number xx, writes it down on the board, a ...
- pandas数据清洗策略1
Pandas常用的数据清洗5大策略如下: 1.删除 DataFrame 中的不必要 columns 2.改变 DataFrame 的 index 3.使用 .str() 方法来清洗 columns 4 ...
- Day5 Pyhton基础之编码与解码(四)
1.编码与解码 1.1现在常用的编码类型
- hadoop和java 配置环境变量的的tar
第一步:打开工具上传tar包 如下图 第二步:在文件路径下查看是否上传成功 第三步:解压tar包 tar -zxvf hadoop.2.6.5.tar.gz 第四步:配置环 ...
- 数组建 BST
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; int N, root = 1; int ...
- Rime 小狼毫 注意事项
https://rime.im/https://github.com/rime/weasel/pulse 打不出中文可能是,没有五笔需要的文件: wubi_pinyin.schema.yamlCtrl ...