http://codeforces.com/problemset/problem/1073/E

题意 给定K,L,R,求L~R之间最多不包含超过K个数码的数的和。

显然这是一道数位dp,在做的过程中会发现为了统计数码是否出现过这个状态需要用到状态压缩

因为不同位置出现的数贡献不同,除了传统的dp数组之外还需要记录一个tot来统计这个位置之后出现数字的个数方便后面计算答案。

仔细对比了一下为什么我要开五维数组而网上的题解只需要开二维的数组,发现一是因为网上的题解不对前导0和limit的情况进行记忆化搜索,仔细想了一下这两种情况确实分支的情况比较小,为了他开两倍的空间的确不那么值得。

二是因为dp除了记录位置和是否出现过这个state之外,每个位置是什么数事实上是不需要记录的,对于一个位置和一个状态事实上后续就有固定的答案,不需要额外开一个数字来记录,对于后效答案的更新可以放在进入记忆话搜索之前,因而数字这位数字也可以省略掉。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
inline int read(){int now=;register char c=getchar();for(;!isdigit(c);c=getchar());
for(;isdigit(c);now=now*+c-'',c=getchar());return now;}
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const LL mod = ;
LL L,R;
int K;
LL ten[maxn];
int str[maxn];
LL dp[][][][][];
LL tot[][][][][];
int cnt;
LL dfs(int pos,int num,int use,int k,int limit,bool zero){
if(pos == ){
tot[pos][num][use][limit][zero] = ;
return num;
}
if(~dp[pos][num][use][limit][zero]) return dp[pos][num][use][limit][zero];
LL ed = limit?str[pos - ]:;
LL sum = ;
for(int i = ; i <= ed; i ++){
if(!(use & ( << i)) && (zero || i)){
if(k + > K) continue;
LL x = dfs(pos - ,i,use | ( << i),k + ,limit && i == str[pos - ],zero || i);
sum = (sum + x) % mod;
tot[pos][num][use][limit][zero] += tot[pos - ][i][use | ( << i)][limit && i == (str[pos - ])][zero || i];
}else{
LL x = dfs(pos - ,i,use,k,limit && i == str[pos - ],zero || i);
sum = (sum + x) % mod;
tot[pos][num][use][limit][zero] += tot[pos - ][i][use][limit && i == (str[pos - ])][zero || i];
}
}
tot[pos][num][use][limit][zero] %= mod;
if(zero) sum = (sum + tot[pos][num][use][limit][zero] * num % mod * ten[pos]) % mod;
dp[pos][num][use][limit][zero] = sum;
return sum;
}
LL solve(LL x){
Mem(dp,-); Mem(tot,);
if(x <= ) return ;
cnt = ;
while(x){
str[cnt++] = x % ;
x /= ;
}
return dfs(cnt,,,,,);
}
int main()
{
ten[] = ;
for(int i = ; i <= ; i ++) ten[i] = (ten[i - ] * ) % mod;
scanf("%lld%lld%d",&L,&R,&K);
LL ans1 = solve(R),ans2 = solve(L - );
//cout << ans1 << " " << ans2 << endl;
Prl((ans1 - ans2 + mod) % mod);
#ifdef VSCode
system("pause");
#endif
return ;
}

CodeForces1073E 数位dp+状压dp的更多相关文章

  1. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

  2. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

  3. hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)

    传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...

  4. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  5. 状态压缩dp 状压dp 详解

    说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...

  6. 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)

    题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...

  7. 51nod 1673 树有几多愁(链表维护树形DP+状压DP)

    题意 lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输出 ...

  8. BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】

    题目链接 BZOJ3836 题解 显然这是个\(NP\)完全问题,此题的解决全仗任意两点间不存在节点数超过10的简单路径的性质 这意味着什么呢? \(dfs\)树深度不超过\(10\) \(10\)很 ...

  9. SCUT - 254 - 欧洲爆破 - 概率dp - 状压dp

    https://scut.online/p/254 思路很清晰,写起来很恶心. #include<bits/stdc++.h> using namespace std; #define l ...

  10. bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2989  Solved: 1557[Submit][Statu ...

随机推荐

  1. Xtoken

    “我希望有一种模式,利用群体的智慧让最好的想法总能够脱颖而出”. 博弈模型 背景 本文为NEO社区理事会秘书长陶荣祺在全球创业周区块链创新与发展论坛上的主题演讲<Xtoken代观社区驱动群体智慧 ...

  2. 【RNN】资源汇总

    wesome Recurrent Neural Networks A curated list of resources dedicated to recurrent neural networks ...

  3. Ubuntu开发用新机安装流程

    1.SSH安装 Ubuntu缺省已安装客户端,此处安装服务端 sudo apt-get install openssh-server 确认sshserver是否启动 netstat -tlp | gr ...

  4. BZOJ4482[Jsoi2015]套娃——贪心+set

    题目描述 [故事背景] 刚从俄罗斯旅游回来的JYY买了很多很多好看的套娃作为纪念品!比如右 图就是一套他最喜欢的套娃J.JYY由于太过激动,把所有的套娃全 部都打开了.而由于很多套娃长得过于相像,JY ...

  5. POJ1860-Currency Exchange-判正环

    两种货币的交换可以当成两条边,建图后跑Bellman_ford算法就好了. Bellman_ford算法可以用来处理负边权,所以可以判断是否存在负环.反过来就可以判断是否存在正环. /*------- ...

  6. DRF 序列化组件

    Serializers 序列化组件 Django的序列化方法 class BooksView(View): def get(self, request): book_list = Book.objec ...

  7. L - Vases and Flowers HDU - 4614 线段树+二分

    题意 给出一排空花瓶 有两种操作  1是 从A花瓶开始放F朵花 如果当前瓶有花就跳过前往下一个 直到花用完或者 瓶子到了最后一个为止 输出 成功放花的第一个和最后一个  如果没有输出 can not. ...

  8. shopNC 拓扑图

    shopNC :

  9. python学习日记(编码再回顾)

    当想从一种编码方式转换为另一种编码方式时,执行的就是以上步骤. 在python3里面,默认编码方式是unicode,所以无需解码(decode),直接编码(encode)成你想要的编码方式就可以了. ...

  10. HAOI2015 简要题解

    「HAOI2015」树上染色 题意 有一棵点数为 \(N\) 的树,树边有边权.给你一个在 \(0 \sim N\) 之内的正整数 \(K\),你要在这棵树中选择 \(K\) 个点,将其染成黑色,并将 ...