最短路经算法简介(Dijkstra算法,A*算法,D*算法)
据 Drew 所知最短路经算法现在重要的应用有计算机网络路由算法,机器人探路,交通路线导航,人工智能,游戏设计等等。美国火星探测器核心的寻路算法就是采用的D*(D Star)算法。
最短路经计算分静态最短路计算和动态最短路计算。
静态路径最短路径算法是外界环境不变,计算最短路径。主要有Dijkstra算法,A*(A Star)算法。
动态路径最短路是外界环境不断发生变化,即不能计算预测的情况下计算最短路。如在游戏中敌人或障碍物不断移动的情况下。典型的有D*算法
Dijkstra算法求最短路径:
Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。 Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式,Drew为了和下面要介绍的 A* 算法和 D* 算法表述一致,这里均采用OPEN,CLOSE表的方式。 大概过程:
创建两个表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
. 访问路网中里起始点最近且没有被检查过的点,把这个点放入OPEN组中等待检查。
. 从OPEN表中找出距起始点最近的点,找出这个点的所有子节点,把这个点放到CLOSE表中。
. 遍历考察这个点的子节点。求出这些子节点距起始点的距离值,放子节点到OPEN表中。
. 重复2,,步。直到OPEN表为空,或找到目标点。
这是在drew 程序中4000个节点的随机路网上Dijkstra算法搜索最短路的演示,黑色圆圈表示经过遍历计算过的点由图中可以看到Dijkstra算法从起始点开始向周围层层计算扩展,在计算大量节点后,到达目标点。所以速度慢效率低。
提高Dijkstra搜索速度的方法很多,据Drew所知,常用的有数据结构采用Binary heap的方法,和用Dijkstra从起始点和终点同时搜索的方法。
基本思想
引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。
操作步骤
(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。
(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
(4) 重复步骤(2)和(3),直到遍历完所有顶点。
单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。
/*
测试数据 教科书 P189 G6 的邻接矩阵 其中 数字 1000000 代表无穷大
6
1000000 1000000 10 100000 30 100
1000000 1000000 5 1000000 1000000 1000000
1000000 1000000 1000000 50 1000000 1000000
1000000 1000000 1000000 1000000 1000000 10
1000000 1000000 1000000 20 1000000 60
1000000 1000000 1000000 1000000 1000000 1000000
结果:
D[0] D[1] D[2] D[3] D[4] D[5]
0 1000000 10 50 30 60
*/
#include <stdio.h>
#define MAX 1000000 int arcs[][];//邻接矩阵
int D[];//保存最短路径长度
int p[][];//路径
int final[];//若final[i] = 1则说明 顶点vi已在集合S中
int n = ;//顶点个数
int v0 = ;//源点
int v,w;
void ShortestPath_DIJ()
{
for (v = ; v < n; v++) //循环 初始化
{
final[v] = ; D[v] = arcs[v0][v];
for (w = ; w < n; w++) p[v][w] = ;//设空路径
if (D[v] < MAX) {p[v][v0] = ; p[v][v] = ;}
}
D[v0] = ; final[v0]=; //初始化 v0顶点属于集合S
//开始主循环 每次求得v0到某个顶点v的最短路径 并加v到集合S中
for (int i = ; i < n; i++)
{
int min = MAX;
for (w = ; w < n; w++)
{
//我认为的核心过程--选点
if (!final[w]) //如果w顶点在V-S中
{
//这个过程最终选出的点 应该是选出当前V-S中与S有关联边
//且权值最小的顶点 书上描述为 当前离V0最近的点
if (D[w] < min) {v = w; min = D[w];}
}
}
final[v] = ; //选出该点后加入到合集S中
for (w = ; w < n; w++)//更新当前最短路径和距离
{
/*在此循环中 v为当前刚选入集合S中的点
则以点V为中间点 考察 d0v+dvw 是否小于 D[w] 如果小于 则更新
比如加进点 3 则若要考察 D[5] 是否要更新 就 判断 d(v0-v3) + d(v3-v5) 的和是否小于D[5]
*/
if (!final[w] && (min+arcs[v][w]<D[w]))
{
D[w] = min + arcs[v][w];
// p[w] = p[v];
p[w][w] = ; //p[w] = p[v] + [w]
}
}
}
} int main()
{
freopen("./Dijkstra.txt", "r", stdin);
scanf("%d", &n);
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
scanf("%d", &arcs[i][j]);
}
}
ShortestPath_DIJ();
for (int i = ; i < n; i++) printf("D[%d] = %d\n",i,D[i]);
return ;
}
A*(A Star)算法:启发式(heuristic)算法
A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。
公式表示为: f(n)=g(n)+h(n),
其中f(n) 是节点n从初始点到目标点的估价函数,
g(n) 是在状态空间中从初始节点到n节点的实际代价,即起始节点到当前节点的实际代价.
h(n)是从n到目标节点最佳路径的估计代价。即当前节点到目标节点的估计代价.
g(n):对g*(n)的一个估计,是当前的搜索图G中s到n的最优路径费用 g(n)≥g*(n)
h(n):对h*(n)的估计,是从n到目标节点的估计代价,称为启发函数。
例如:当h(n) = 0, g(n) = d, 则f(n) = g(n)就变为了宽度优先搜索,也就是如果不需要启发,那就是宽度优先搜索的算法了。
.
g(n):对g*(n)的一个估计,是当前的搜索图G中s到n的最优路径费用 g(n)≥g*(n)
h(n):对h*(n)的估计,是从n到目标节点的估计代价,称为启发函数。
例如:当h(n) = 0, g(n) = d, 则f(n) = g(n)就变为了宽度优先搜索,也就是如果不需要启发,那就是宽度优先搜索的算法了。
保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:
估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
如果 估价值>实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
估价值与实际值越接近,估价函数取得就越好。
例如对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijstra算法的毫无无方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索过程:
创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
遍历当前节点的各个节点,将n节点放入CLOSE中,取n节点的子节点X,->算X的估价值->
While(OPEN!=NULL)
{
从OPEN表中取估价值f最小的节点n;
if(n节点==目标节点) break;
else
{
if(X in OPEN) 比较两个X的估价值f //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于OPEN表的估价值 )
更新OPEN表中的估价值; //取最小路径的估价值 if(X in CLOSE) 比较两个X的估价值 //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于CLOSE表的估价值 )
更新CLOSE表中的估价值; 把X节点放入OPEN //取最小路径的估价值 if(X not in both)
求X的估价值;
并将X插入OPEN表中; //还没有排序
} 将n节点插入CLOSE表中;
按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。
}
上图是和上面Dijkstra算法使用同一个路网,相同的起点终点,用A*算法的情况,计算的点数从起始点逐渐向目标点方向扩展,计算的节点数量明显比Dijkstra少得多,效率很高,且能得到最优解。
A*算法和Dijistra算法的区别在于有无估价值,Dijistra算法相当于A*算法中估价值为0的情况。
D*算法
待补充...
原文网址已经被占用.
Floyd(弗洛伊德)算法( from JarryWell)
Floyd算法是一个经典的动态规划算法。是解决任意两点间的最短路径(称为多源最短路径问题)的一种算法,可以正确处理有向图或负权的最短路径问题。(动态规划算法是通过拆分问题规模,并定义问题状态与状态的关系,使得问题能够以递推(分治)的方式去解决,最终合并各个拆分的小问题的解为整个问题的解。)
算法思想
从任意节点i到任意节点j的最短路径不外乎2种可能:1)直接从节点i到节点j,2)从节点i经过若干个节点k到节点j。所以,我们假设arcs(i,j)为节点i到节点j的最短路径的距离,对于每一个节点k,我们检查arcs(i,k) + arcs(k,j) < arcs(i,j)是否成立,如果成立,证明从节点i到节点k再到节点j的路径比节点i直接到节点j的路径短,我们便设置arcs(i,j) = arcs(i,k) + arcs(k,j),这样一来,当我们遍历完所有节点k,arcs(i,j)中记录的便是节点i到节点j的最短路径的距离。(由于动态规划算法在执行过程中,需要保存大量的临时状态(即小问题的解),因此它天生适用于用矩阵来作为其数据结构,因此在本算法中,我们将不使用Guava-Graph结构,而采用邻接矩阵来作为本例的数据结构)
for (int k = ; k <= vexCount; k++) { //并入中转节点1,2,...vexCount
for (int i = ; i <= vexCount; i++) {
for (int j = ; j < vexCount; j++) {
if (arcs[i][k] + arcs[k][j] < arcs[i][j]) {
arcs[i][j] = arcs[i][k] + arcs[k][j];
path[i][j] = path[i][k]; //这里保存当前是中转的是哪个节点的信息
}
}
}
}
最短路经算法简介(Dijkstra算法,A*算法,D*算法)的更多相关文章
- 蚁群算法简介(part 1:蚁群算法之绪论)
群算法是Marco Dorigo在1992年提出的一种优化算法,该算法受到蚂蚁搜索食物时对路径的选择策略的启示.蚁群算法作为群体智能算法的一种利用分布式的种群搜索策略来寻找目标函数的最优解.蚁群算法与 ...
- 算法-迪杰斯特拉算法(dijkstra)-最短路径
迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中 ...
- 网格最短路径算法(Dijkstra & Fast Marching)
Dijkstra算法是计算图中节点之间最短路径的经典算法,网上关于Dijkstra算法原理介绍比较多,这里不再多讲.值得一提的是,当图中节点之间的权重都为1时,Dijkstra算法就变化为一般意义上的 ...
- 《算法导论》读书笔记之图论算法—Dijkstra 算法求最短路径
自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的 ...
- 网格最短路径算法(Dijkstra & Fast Marching)(转)
Dijkstra算法是计算图中节点之间最短路径的经典算法,网上关于Dijkstra算法原理介绍比较多,这里不再多讲.值得一提的是,当图中节点之间的权重都为1时,Dijkstra算法就变化为一般意义上的 ...
- 数据结构与算法系列研究七——图、prim算法、dijkstra算法
图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph ...
- <算法图解>读书笔记:第1章 算法简介
阅读书籍:[美]Aditya Bhargava◎著 袁国忠◎译.人民邮电出版社.<算法图解> 第1章 算法简介 1.2 二分查找 一般而言,对于包含n个元素的列表,用二分查找最多需要\(l ...
- 【算法】狄克斯特拉算法(Dijkstra’s algorithm)
狄克斯特拉算法(Dijkstra’s algorithm) 找出最快的路径使用算法——狄克斯特拉算法(Dijkstra’s algorithm). 使用狄克斯特拉算法 步骤 (1) 找出最便宜的节点, ...
- Prim算法、Kruskal算法、Dijkstra算法
无向加权图 1.生成树(minimum spanning trees) 图的生成树是它一棵含有所有顶点的无环联通子图 最小生成树:生成树中权值和最小的(所有边的权值之和) Prim算法.Kruskal ...
随机推荐
- Ajax与CORS通信
处理跨域的主要方法 JSONP CORS 本文主要讨论CORS解决Ajax因为浏览器同源策略不能跨域请求数据的问题. 1. JSONP JSONP跨域可以参考下面这篇博客 JSONP跨域 2. COR ...
- 【python练习题】程序8
#题目:输出 9*9 乘法口诀表. for i in range(1,10): k = '' for j in range(1,i+1): k += '%s * %s = %s '%(i,j,i*j) ...
- easy install 与pip
easy_insall的作用和perl中的cpan, ruby中的gem类似,都提供了在线一键安装模块的傻瓜方便方式,而pip是easy_install的改进版, 提供更好的提示信息,删除packag ...
- c++ string类型的定义及方法
1.c++ 有两种风格的字符串形式 c风格字符串 定义及初始化 char a[]={'h','e','l','l','o','\0'} 或者 char a[]="hello&quo ...
- hdu-5687(字典树)
题意:中文题: 解题思路:增加和查询就不说了,标准操作,就是删除操作:删除操作的时候,我们把给定字符串先在字典树中遍历一遍,然后算出这个字符串最后一个字符的出现次数,然后在遍历一遍,每个节点都减去这个 ...
- Spring注解与Java元注解小结
注解 Annotation 基于注解的开发,使得代码简洁,可读性高,简化的配置的同时也提高了开发的效率,尤其是SpringBoot的兴起,随着起步依赖和自动配置的完善,更是将基于注解的开发推到了新的高 ...
- POJ1151-扫面线+线段树+离散化//入门题
比较水的入门题 记录矩形竖边的x坐标,离散化排序.以被标记的边建树. 扫描线段树,查询线段树内被标记的边.遇到矩形的右边就删除此边 每一段的面积是查询结果乘边的横坐标之差,求和就是答案 #includ ...
- 不同版本的Chrom浏览器对应的ChromDriver的版本
附chromedriver与chrome的对应关系表: chromedriver版本 支持的Chrome版本 v2.40 v66-68 v2.39 v66-68 v2.38 v65-67 v2.37 ...
- VIM 光标移动常用命令
h或^h 向左移一个字符 k或^p 向上移一行 j或^j或^n 向下移一行 l或空格 向右移一个字符 G 移到文件的最后一行 nG 移到文件的第n行 w 移到下一个字的开头 W 移到下一个字 ...
- web 压力测试工具
最近有收到任务,测试新服务器的性能. 花了很长时间做搜索,也整理了一些资料.以下是收集到一些简单易用的分析工具.推荐给大家使用. WebBenchhttp://www.ha97.com/4623.ht ...