Optimal Milking
Time Limit: 2000MS   Memory Limit: 30000K
Total Submissions: 19456   Accepted: 6947
Case Time Limit: 1000MS

Description

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

Each milking point can "process" at most M (1 <= M <= 15) cows each day.

Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.

Input

* Line 1: A single line with three space-separated integers: K, C, and M.

* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow. 

Sample Input

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

Sample Output

2

思路:
直接想到了Floyd和二分,可是就做不下去了,因为不知道怎么把二分的值,应用到图里面。没想到我竟然如此地菜呀。
这题要用到网络流。
先跑一个Floyd,求出各点的最短路。然后,二分答案,假如现在的二分值为mid,那么我们建立一个新图,图的边有以下部分(原图的标号是1->k+c):
1.原图(Floyd之后)距离小于mid,并且,起点是奶牛,终点是收奶机的边,每条边权值为1。
2.源点,也是就0号点,到每个奶牛的边,权值为1
3.每个收奶机,到汇点,也就是c+k+1点的边,每条边的权值为m
其中,源点与汇点都不是原图中存在的点。
然后,求最大流,判断最大流是否小于奶牛数。
代码:
#include<iostream>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
int n,k,c,m;
bool vis[300];
int num[300];
bool outflag;
struct node
{
int v;
int ser;
};
int mp[300][300];
const int inf = 99999999;
int mmp[300][300];
void init()
{
scanf("%d%d%d",&k,&c,&m);
n=k+c;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&mp[i][j]);
if(i!=j&&mp[i][j]==0){mp[i][j]=inf;}
}
}
} int floyd()
{
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(mp[i][j]>mp[i][k]+mp[k][j]){
mp[i][j]=mp[i][k]+mp[k][j];
}
}
}
}
} void build(int maxn)
{
memset(mmp,0,sizeof(mmp));
for(int i=k+1;i<=n;i++){
mmp[0][i]=1;
}
for(int i=1;i<=k;i++){
mmp[i][n+1]=m;
}
for(int i=k+1;i<=n;i++){
for(int j=1;j<=k;j++){
if(mp[i][j]<=maxn){
mmp[i][j]=1;
}
}
}
} bool bfs(int s,int t)
{
queue<node>q;
memset(vis,0,sizeof(vis));
q.push(node{s,1});
node cur;vis[s]=true;
while(!q.empty()){
cur=q.front();q.pop();
num[cur.v]=cur.ser;
vis[cur.v]=true;
for(int i=0;i<=n+1;i++){
if(mmp[cur.v][i]>0&&!vis[i]){
q.push(node{i,cur.ser+1});
}
}
}
if(num[t]){return true;}
else return false;
} int dfs(int s,int t,int f)
{
if(s==t){return f;}
vis[s]=true;
int d;
for(int i=0;i<=n+1;i++){
if(!vis[i]&&mmp[s][i]>0&&num[s]==num[i]-1){
d=dfs(i,t,min(f,mmp[s][i]));
mmp[s][i]-=d;
mmp[i][s]+=d;
if(d!=0){return d;}
}
}
return 0;
} int dinic()
{
memset(num,0,sizeof(num));
int ans=0;
while(bfs(0,n+1)){
int d;
memset(vis,0,sizeof(vis));
while(d=dfs(0,n+1,inf)){
ans+=d;
memset(vis,0,sizeof(vis));
}
memset(num,0,sizeof(num));
} return ans;
} int solve()
{
int l=0,r=inf,mid;
while(r>=l){
mid=(r+l)>>1;
if(mid==2){outflag=1;}
build(mid); if(dinic()>=c){
r=mid-1;
}
else{
l=mid+1;
}
}
return l;
} int main()
{
init();
floyd();
printf("%d\n",solve());
}

  

 

POJ 2112 Optimal Milking (Dinic + Floyd + 二分)的更多相关文章

  1. POJ 2112 Optimal Milking(Floyd+多重匹配+二分枚举)

    题意:有K台挤奶机,C头奶牛,每个挤奶机每天只能为M头奶牛服务,下面给的K+C的矩阵,是形容相互之间的距离,求出来走最远的那头奶牛要走多远   输入数据: 第一行三个数 K, C, M  接下来是   ...

  2. POJ 2112 Optimal Milking【网络流+二分+最短路】

    求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...

  3. POJ 2112 Optimal Milking 最短路 二分构图 网络流

    题意:有C头奶牛,K个挤奶站,每个挤奶器最多服务M头奶牛,奶牛和奶牛.奶牛和挤奶站.挤奶站和挤奶站之间都存在一定的距离.现在问满足所有的奶牛都能够被挤奶器服务到的情况下,行走距离的最远的奶牛的至少要走 ...

  4. POJ 2112 Optimal Milking(最大流+二分)

    题目链接 测试dinic模版,不知道这个模版到底对不对,那个题用这份dinic就是过不了.加上优化就WA,不加优化TLE. #include <cstdio> #include <s ...

  5. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  6. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  7. Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)

    题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...

  8. POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】

    Optimal Milking Time Limit:2000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Sub ...

  9. POJ 2112 Optimal Milking (二分 + 最大流)

    题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...

随机推荐

  1. wget 下载网页

    如有转载,不胜荣幸.http://www.cnblogs.com/aaron-agu/ wget --http-user=username --http-passwd=password http:/w ...

  2. vue表單

    使用v-model進行表單雙向數據綁定. 可以根據控件決定數據的類型,可以綁定input.單選.複選.下拉框等 可以使用number和trim等修飾符.

  3. 扒一扒开源世界有哪些licenses?

    摘要:license,中文译为“许可证”.在开源世界里,license是具有法律效力的,通过选择相应的license,版权拥有者可以声称自己相应的权利,包括其他人使用.修改.引用.共享等一系列涉及版权 ...

  4. python基础数据类型--list列表

    列表: 列表是python中的基础数据类型之一,其他语言中也有类似于列表的数据类型,比如js中叫数组,他是以[]括起来,每个元素以逗号隔开,而且他里面可以存放各种数据类型比如: li = [‘alex ...

  5. .net core 2.0 webuploader上传图片

    引入文件 <link href="~/Scripts/webuploader-0.1.5/webuploader.css" rel="stylesheet" ...

  6. Maven添加Web.xml的方法

    当创建maven工厂时没有web.xml文件1.点击你的项目名称,进入到Myeclipse的-- Project Facets上,2.点击Dynamic Web Module 和下面的Java,将两个 ...

  7. Codeforces 719A 月亮

    参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6395221.html A. Vitya in the Countryside time limit ...

  8. 基准对象object中的基础类型----集合 (七)

    object有如下子类: CLASSES object basestring str unicode buffer bytearray classmethod complex dict enumera ...

  9. 【BZOJ3814】【清华集训2014】简单回路 状压DP

    题目描述 给你一个\(n\times m\)的网格图和\(k\)个障碍,有\(q\)个询问,每次问你有多少个不同的不经过任何一个障碍点且经过\((x,y)\)与\((x+1,y)\)之间的简单回路 \ ...

  10. Django 静态文件相关设置

    项目根目录创建  static 文件夹 settings.py 中加入 STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static") ...