openpose pytorch代码分析
github: https://github.com/tensorboy/pytorch_Realtime_Multi-Person_Pose_Estimation
# -*- coding: utf-8 -*
import os
import re
import sys
import cv2
import math
import time
import scipy
import argparse
import matplotlib
import numpy as np
import pylab as plt
from joblib import Parallel, delayed
import util
import torch
import torch as T
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from collections import OrderedDict
from config_reader import config_reader
from scipy.ndimage.filters import gaussian_filter
#parser = argparse.ArgumentParser()
#parser.add_argument('--t7_file', required=True)
#parser.add_argument('--pth_file', required=True)
#args = parser.parse_args() torch.set_num_threads(torch.get_num_threads())
weight_name = './model/pose_model.pth' blocks = {}
# 从1开始算的limb,图对应:Pose Output Format
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [[2,3], [2,6], [3,4], [4,5], [6,7], [7,8], [2,9], [9,10], \
[10,11], [2,12], [12,13], [13,14], [2,1], [1,15], [15,17], \
[1,16], [16,18], [3,17], [6,18]] # the middle joints heatmap correpondence
mapIdx = [[31,32], [39,40], [33,34], [35,36], [41,42], [43,44], [19,20], [21,22], \
[23,24], [25,26], [27,28], [29,30], [47,48], [49,50], [53,54], [51,52], \
[55,56], [37,38], [45,46]] # visualize
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] # heatmap channel为19 表示关节点的score
# PAF channel为38 表示limb的单位向量
block0 = [{'conv1_1':[3,64,3,1,1]},{'conv1_2':[64,64,3,1,1]},{'pool1_stage1':[2,2,0]},{'conv2_1':[64,128,3,1,1]},{'conv2_2':[128,128,3,1,1]},{'pool2_stage1':[2,2,0]},{'conv3_1':[128,256,3,1,1]},{'conv3_2':[256,256,3,1,1]},{'conv3_3':[256,256,3,1,1]},{'conv3_4':[256,256,3,1,1]},{'pool3_stage1':[2,2,0]},{'conv4_1':[256,512,3,1,1]},{'conv4_2':[512,512,3,1,1]},{'conv4_3_CPM':[512,256,3,1,1]},{'conv4_4_CPM':[256,128,3,1,1]}] blocks['block1_1'] = [{'conv5_1_CPM_L1':[128,128,3,1,1]},{'conv5_2_CPM_L1':[128,128,3,1,1]},{'conv5_3_CPM_L1':[128,128,3,1,1]},{'conv5_4_CPM_L1':[128,512,1,1,0]},{'conv5_5_CPM_L1':[512,38,1,1,0]}] blocks['block1_2'] = [{'conv5_1_CPM_L2':[128,128,3,1,1]},{'conv5_2_CPM_L2':[128,128,3,1,1]},{'conv5_3_CPM_L2':[128,128,3,1,1]},{'conv5_4_CPM_L2':[128,512,1,1,0]},{'conv5_5_CPM_L2':[512,19,1,1,0]}] for i in range(2,7):
blocks['block%d_1'%i] = [{'Mconv1_stage%d_L1'%i:[185,128,7,1,3]},{'Mconv2_stage%d_L1'%i:[128,128,7,1,3]},{'Mconv3_stage%d_L1'%i:[128,128,7,1,3]},{'Mconv4_stage%d_L1'%i:[128,128,7,1,3]},
{'Mconv5_stage%d_L1'%i:[128,128,7,1,3]},{'Mconv6_stage%d_L1'%i:[128,128,1,1,0]},{'Mconv7_stage%d_L1'%i:[128,38,1,1,0]}]
blocks['block%d_2'%i] = [{'Mconv1_stage%d_L2'%i:[185,128,7,1,3]},{'Mconv2_stage%d_L2'%i:[128,128,7,1,3]},{'Mconv3_stage%d_L2'%i:[128,128,7,1,3]},{'Mconv4_stage%d_L2'%i:[128,128,7,1,3]},
{'Mconv5_stage%d_L2'%i:[128,128,7,1,3]},{'Mconv6_stage%d_L2'%i:[128,128,1,1,0]},{'Mconv7_stage%d_L2'%i:[128,19,1,1,0]}] def make_layers(cfg_dict):
layers = []
for i in range(len(cfg_dict)-1):
one_ = cfg_dict[i]
for k,v in one_.iteritems():
if 'pool' in k:
layers += [nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2] )]
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride = v[3], padding=v[4])
layers += [conv2d, nn.ReLU(inplace=True)]
one_ = cfg_dict[-1].keys()
k = one_[0]
v = cfg_dict[-1][k]
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride = v[3], padding=v[4])
layers += [conv2d]
return nn.Sequential(*layers) layers = []
for i in range(len(block0)):
one_ = block0[i]
for k,v in one_.iteritems():
if 'pool' in k:
layers += [nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2] )]
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride = v[3], padding=v[4])
layers += [conv2d, nn.ReLU(inplace=True)] models = {}
models['block0']=nn.Sequential(*layers) for k,v in blocks.iteritems():
models[k] = make_layers(v) class pose_model(nn.Module):
def __init__(self,model_dict,transform_input=False):
super(pose_model, self).__init__()
self.model0 = model_dict['block0']
self.model1_1 = model_dict['block1_1']
self.model2_1 = model_dict['block2_1']
self.model3_1 = model_dict['block3_1']
self.model4_1 = model_dict['block4_1']
self.model5_1 = model_dict['block5_1']
self.model6_1 = model_dict['block6_1'] self.model1_2 = model_dict['block1_2']
self.model2_2 = model_dict['block2_2']
self.model3_2 = model_dict['block3_2']
self.model4_2 = model_dict['block4_2']
self.model5_2 = model_dict['block5_2']
self.model6_2 = model_dict['block6_2'] def forward(self, x):
out1 = self.model0(x) out1_1 = self.model1_1(out1)
out1_2 = self.model1_2(out1)
out2 = torch.cat([out1_1,out1_2,out1],1) out2_1 = self.model2_1(out2)
out2_2 = self.model2_2(out2)
out3 = torch.cat([out2_1,out2_2,out1],1) out3_1 = self.model3_1(out3)
out3_2 = self.model3_2(out3)
out4 = torch.cat([out3_1,out3_2,out1],1) out4_1 = self.model4_1(out4)
out4_2 = self.model4_2(out4)
out5 = torch.cat([out4_1,out4_2,out1],1) out5_1 = self.model5_1(out5)
out5_2 = self.model5_2(out5)
out6 = torch.cat([out5_1,out5_2,out1],1) out6_1 = self.model6_1(out6)
out6_2 = self.model6_2(out6) return out6_1,out6_2 model = pose_model(models)
model.load_state_dict(torch.load(weight_name))
model.cuda()
model.float()
model.eval() param_, model_ = config_reader() #torch.nn.functional.pad(img pad, mode='constant', value=model_['padValue'])
tic = time.time()
test_image = './sample_image/ski.jpg'
#test_image = 'a.jpg'
oriImg = cv2.imread(test_image) # B,G,R order
imageToTest = Variable(T.transpose(T.transpose(T.unsqueeze(torch.from_numpy(oriImg).float(),0),2,3),1,2),volatile=True).cuda() multiplier = [x * model_['boxsize'] / oriImg.shape[0] for x in param_['scale_search']] # 不同scale输入 heatmap_avg = torch.zeros((len(multiplier),19,oriImg.shape[0], oriImg.shape[1])).cuda()
paf_avg = torch.zeros((len(multiplier),38,oriImg.shape[0], oriImg.shape[1])).cuda()
#print heatmap_avg.size() toc =time.time()
print 'time is %.5f'%(toc-tic)
tic = time.time()
for m in range(len(multiplier)):
scale = multiplier[m]
h = int(oriImg.shape[0]*scale)
w = int(oriImg.shape[1]*scale)
pad_h = 0 if (h%model_['stride']==0) else model_['stride'] - (h % model_['stride'])
pad_w = 0 if (w%model_['stride']==0) else model_['stride'] - (w % model_['stride'])
new_h = h+pad_h
new_w = w+pad_w imageToTest = cv2.resize(oriImg, (0,0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, model_['stride'], model_['padValue'])
imageToTest_padded = np.transpose(np.float32(imageToTest_padded[:,:,:,np.newaxis]), (3,2,0,1))/256 - 0.5
# (-0.5~0.5)
feed = Variable(T.from_numpy(imageToTest_padded)).cuda()
output1,output2 = model(feed)
print output1.size()
print output2.size()
heatmap = nn.UpsamplingBilinear2d((oriImg.shape[0], oriImg.shape[1])).cuda()(output2) # 对output上采样至原图大小 paf = nn.UpsamplingBilinear2d((oriImg.shape[0], oriImg.shape[1])).cuda()(output1) # 同理 heatmap_avg[m] = heatmap[0].data
paf_avg[m] = paf[0].data toc =time.time()
print 'time is %.5f'%(toc-tic)
tic = time.time()
# 不同scale的heatmap和PAF取均值
heatmap_avg = T.transpose(T.transpose(T.squeeze(T.mean(heatmap_avg, 0)),0,1),1,2).cuda()
paf_avg = T.transpose(T.transpose(T.squeeze(T.mean(paf_avg, 0)),0,1),1,2).cuda()
heatmap_avg=heatmap_avg.cpu().numpy()
paf_avg = paf_avg.cpu().numpy()
toc =time.time()
print 'time is %.5f'%(toc-tic)
tic = time.time() all_peaks = []
peak_counter = 0 #maps =
# picture array is reversed
for part in range(18): # 18个关节点的featuremap
map_ori = heatmap_avg[:,:,part]
map = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(map.shape)
map_left[1:,:] = map[:-1,:]
map_right = np.zeros(map.shape)
map_right[:-1,:] = map[1:,:]
map_up = np.zeros(map.shape)
map_up[:,1:] = map[:,:-1]
map_down = np.zeros(map.shape)
map_down[:,:-1] = map[:,1:] # 计算是否为局部极值
peaks_binary = np.logical_and.reduce((map>=map_left, map>=map_right, map>=map_up, map>=map_down, map > param_['thre1']))
# peaks_binary = T.eq(
# peaks = zip(T.nonzero(peaks_binary)[0],T.nonzero(peaks_binary)[0]) peaks = zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse peaks_with_score = [x + (map_ori[x[1],x[0]],) for x in peaks]
id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))] all_peaks.append(peaks_with_score_and_id) # 一个关节点featuremap上不同人的peak [[y, x, peak_score, id)],...]
peak_counter += len(peaks) # 计算线性积分 采样10个点计算
connection_all = []
special_k = []
mid_num = 10 for k in range(len(mapIdx)):
score_mid = paf_avg[:,:,[x-19 for x in mapIdx[k]]] # channel为2的paf_avg,表示PAF向量
candA = all_peaks[limbSeq[k][0]-1] #第k个limb中左关节点的候选集合A(不同人的关节点)
candB = all_peaks[limbSeq[k][1]-1] #第k个limb中右关节点的候选集合B(不同人的关节点)
nA = len(candA)
nB = len(candB)
# indexA, indexB = limbSeq[k]
if(nA != 0 and nB != 0): # 有候选时开始连接
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0]*vec[0] + vec[1]*vec[1])
vec = np.divide(vec, norm) # 计算单位向量 startend = zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
np.linspace(candA[i][1], candB[j][1], num=mid_num)) # 在A[i],B[j]连接线上采样mid_num个点 # 计算采样点的PAF向量
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
for I in range(len(startend))])
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
for I in range(len(startend))]) # 采样点的PAF向量与limb的单位向量计算余弦相似度score,内积
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts)/len(score_midpts) + min(0.5*oriImg.shape[0]/norm-1, 0)
criterion1 = len(np.nonzero(score_midpts > param_['thre2'])[0]) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
# (i,j,score,score_all)
connection_candidate.append([i, j, score_with_dist_prior, score_with_dist_prior+candA[i][2]+candB[j][2]]) connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) # 按score排序
connection = np.zeros((0,5))
for c in range(len(connection_candidate)):
i,j,s = connection_candidate[c][0:3]
if(i not in connection[:,3] and j not in connection[:,4]):
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) # A_id, B_id, score, i, j
if(len(connection) >= min(nA, nB)):
break connection_all.append(connection) # 多个符合当前limb的组合 [[A_id, B_id, score, i, j],...]
else:
special_k.append(k)
connection_all.append([]) '''
function: 关节点连成每个人的limb
subset: last number in each row is the total parts number of that person
subset: the second last number in each row is the score of the overall configuration
candidate: 候选关节点
connection_all: 候选limb '''
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist]) # 一个id的(y,x,score,id)(关节点) for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:,0] # 第k个limb,左端点的候选id集合
partBs = connection_all[k][:,1] # 第k个limb,右端点的候选id集合
indexA, indexB = np.array(limbSeq[k]) - 1 # 关节点index for i in range(len(connection_all[k])): #= 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): #1:size(subset,1): 遍历subset里每个人,看当前两个关节点出现过几次
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1 if found == 1: # 在这个人的subset里连上这个limb
j = subset_idx[0]
if(subset[j][indexB] != partBs[i]):
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif(subset[j][indexA] != partAs[i]):
subset[j][indexA] = partAs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partAs[i].astype(int), 2] + connection_all[k][i][2] elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
print "found = 2"
membership = ((subset[j1]>=0).astype(int) + (subset[j2]>=0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0:
# 如果两个人的相同关节点没有在各自的subset中都连成limb,那么合并两个subset构成一个人
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
# To-Do 这里有问题, 怎么合并才对?
# else: # as like found == 1
# subset[j1][indexB] = partBs[i]
# subset[j1][-1] += 1
# subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] # if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i,:2].astype(int), 2]) + connection_all[k][i][2]
subset = np.vstack([subset, row]) # delete some rows of subset which has few parts occur
deleteIdx = [];
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2]/subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0) canvas = cv2.imread(test_image) # B,G,R order
for i in range(18):
for j in range(len(all_peaks[i])):
cv2.circle(canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1) stickwidth = 4 for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i])-1] # limb的两个关节点index
if -1 in index:
continue
cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0] # 两个index点的纵坐标
X = candidate[index.astype(int), 1] # 两个index点的横坐标
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY),int(mX)), (int(length/2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) #Parallel(n_jobs=1)(delayed(handle_one)(i) for i in range(18)) toc =time.time()
print 'time is %.5f'%(toc-tic)
cv2.imwrite('result.png',canvas)
openpose pytorch代码分析的更多相关文章
- (原)SphereFace及其pytorch代码
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8524937.html 论文: SphereFace: Deep Hypersphere Embeddi ...
- 目标检测之Faster-RCNN的pytorch代码详解(数据预处理篇)
首先贴上代码原作者的github:https://github.com/chenyuntc/simple-faster-rcnn-pytorch(非代码作者,博文只解释代码) 今天看完了simple- ...
- 残差网络resnet理解与pytorch代码实现
写在前面 深度残差网络(Deep residual network, ResNet)自提出起,一次次刷新CNN模型在ImageNet中的成绩,解决了CNN模型难训练的问题.何凯明大神的工作令人佩服 ...
- Android代码分析工具lint学习
1 lint简介 1.1 概述 lint是随Android SDK自带的一个静态代码分析工具.它用来对Android工程的源文件进行检查,找出在正确性.安全.性能.可使用性.可访问性及国际化等方面可能 ...
- pmd静态代码分析
在正式进入测试之前,进行一定的静态代码分析及code review对代码质量及系统提高是有帮助的,以上为数据证明 Pmd 它是一个基于静态规则集的Java源码分析器,它可以识别出潜在的如下问题:– 可 ...
- [Asp.net 5] DependencyInjection项目代码分析-目录
微软DI文章系列如下所示: [Asp.net 5] DependencyInjection项目代码分析 [Asp.net 5] DependencyInjection项目代码分析2-Autofac [ ...
- [Asp.net 5] DependencyInjection项目代码分析4-微软的实现(5)(IEnumerable<>补充)
Asp.net 5的依赖注入注入系列可以参考链接: [Asp.net 5] DependencyInjection项目代码分析-目录 我们在之前讲微软的实现时,对于OpenIEnumerableSer ...
- 完整全面的Java资源库(包括构建、操作、代码分析、编译器、数据库、社区等等)
构建 这里搜集了用来构建应用程序的工具. Apache Maven:Maven使用声明进行构建并进行依赖管理,偏向于使用约定而不是配置进行构建.Maven优于Apache Ant.后者采用了一种过程化 ...
- STM32启动代码分析 IAR 比较好
stm32启动代码分析 (2012-06-12 09:43:31) 转载▼ 最近开始使用ST的stm32w108芯片(也是一款zigbee芯片).开始看他的启动代码看的晕晕呼呼呼的. 还好在c ...
随机推荐
- 对比Dijakstra和优先队列式分支限界
Dijakstra和分支限界都是基于广度优先搜索,如果说两者都是生成一棵树,那Dijakstra总是找距离树根最近的(属于贪心算法),优先队列式分支限界是在层遍历整棵搜索树的同时剪去达不到最优的树枝. ...
- jquery获取、设置、删除cookie
获取cookie: function getCookie(cname) { var name = cname + "="; var ca = document.cookie.spl ...
- hibernate框架学习第六天:QBC、分页查询、投影、数据加载策略、二级缓存
QBC查询 1.简单查询 Criteria c = s.createCriteria(TeacherModel.class); 2.获取查询结果 多条:list 单挑:uniqueResult 3.分 ...
- 028_shell脚本递归求值
一. #!/bin/sh factorial() { if [ "$1" -gt "1" ]; then i=`expr $1 - 1` j=`factoria ...
- SmartGit/HG
SmartGit/HG 是一款开放源代码的.跨平台的.支持 Git 和 Mercurial 的 SVN 图形客户端,可运行在Windows.Linux 和 MAC OS X 系统上.可用的最新版本 S ...
- js获取当前星期几
使用Date对象的getDay方法可以获取当前日期的星期数. getDay() 方法可返回表示星期的某一天的数字. 示例: var date = new Date(); alert(date.getD ...
- Js操作Array数组
之前写过一篇文章,但是很模糊,不过却给我提供了一个思路,所以没有删除,这次写的是一个完善版本! 因为在很多的时候我们在选中了几行数据,然后存放在Array中,如下图: 看下控制台的数据 我双击了这两个 ...
- Jquyer table 中的数据分页
直接上代码,复制出来就可以使用 <!DOCTYPE html> <html> <head lang="en"> <meta charset ...
- 手机端上点击input框软键盘出现时把input框不被覆盖,显示在屏幕中间(转)
转载地址:https://www.cnblogs.com/xzzzys/p/7526761.html 1 用定位为题来解决var oHeight = $(document).height(); // ...
- Confluence 6 数据库 JDBC 驱动
本页面提供了支持的数据库的所有 JDBC 驱动下载链接. 基于许可证的原因,我们没有将 MySQL 或 Oracle 的数据库驱动整合到 Confluence 中,因此你需要在 Confluence ...