Keras入门(一)搭建深度神经网络(DNN)解决多分类问题
Keras介绍
Keras是一个开源的高层神经网络API,由纯Python编写而成,其后端可以基于Tensorflow、Theano、MXNet以及CNTK。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果。Keras适用的Python版本是:Python 2.7-3.6。
Keras,在希腊语中意为“角”(horn),于2015年3月份第一次发行,它可以在Windows, Linux, Mac等系统中运行。那么,既然有了TensorFlow(或Theano、MXNet、CNTK),为什么还需要Keras呢?这是因为,尽管我们可以用TensorFlow等来创建深度神经网络系统,但Tensorflow等使用相对低级的抽象,直接编写TensorFlow代码具有一定的挑战性,而Keras在TensorFlow的基础上,增加了较易使用的抽象层,使用起来更加简单、高效。
什么样的场合适合用Keras呢?如果你有如下需求,请选择Keras:
- 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)
- 支持CNN和RNN,或二者的结合
- 无缝CPU和GPU切换
如果想用在你的电脑上使用Keras,需要以下工具:
- Python
- TensorFlow
- Keras
在这里,我们选择TensorFlow作为Keras的后端工具。使用以下Python代码,可以输出Python、TensorFlow以及Keras的版本号:
import sys
import keras as K
import tensorflow as tf
py_ver = sys.version
k_ver = K.__version__
tf_ver = tf.__version__
print("Using Python version " + str(py_ver))
print("Using Keras version " + str(k_ver))
print("Using TensorFlow version " + str(tf_ver))
在笔者的电脑上,输出的结果如下:
Using TensorFlow backend.
Using Python version 3.5.1 (v3.5.1:37a07cee5969, Dec 6 2015, 01:54:25) [MSC v.1900 64 bit (AMD64)]
Using Keras version 2.1.5
Using TensorFlow version 1.6.0
下面,笔者将使用IRIS数据集(鸢尾花数据集,一个经典的机器学习数据集,适合作为多分类问题的测试数据),使用Keras搭建一个深度神经网络(DNN),来解决IRIS数据集的多分类问题,作为Keras入门的第一个例子。
IRIS数据集介绍
IRIS数据集(鸢尾花数据集),是一个经典的机器学习数据集,适合作为多分类问题的测试数据,它的下载地址为:http://archive.ics.uci.edu/ml/machine-learning-databases/iris/。
IRIS数据集是用来给鸢尾花做分类的数据集,一共150个样本,每个样本包含了花萼长度(sepal length in cm)、花萼宽度(sepal width in cm)、花瓣长度(petal length in cm)、花瓣宽度(petal width in cm)四个特征,将鸢尾花分为三类,分别为Iris Setosa,Iris Versicolour,Iris Virginica,每一类都有50个样本。
IRIS数据集具体如下(只展示部分数据,顺序已打乱):
读取数据集
笔者的IRIS数据集以csv格式储存,笔者将使用Pandas来读取IRIS数据集,并对目标变量进行0-1编码(One-hot Encoding),最后将该数据集分为训练集和测试集,比例为7:3。完整的Python代码如下:
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
# 读取CSV数据集,并拆分为训练集和测试集
# 该函数的传入参数为CSV_FILE_PATH: csv文件路径
def load_data(CSV_FILE_PATH):
IRIS = pd.read_csv(CSV_FILE_PATH)
target_var = 'class' # 目标变量
# 数据集的特征
features = list(IRIS.columns)
features.remove(target_var)
# 目标变量的类别
Class = IRIS[target_var].unique()
# 目标变量的类别字典
Class_dict = dict(zip(Class, range(len(Class))))
# 增加一列target, 将目标变量进行编码
IRIS['target'] = IRIS[target_var].apply(lambda x: Class_dict[x])
# 对目标变量进行0-1编码(One-hot Encoding)
lb = LabelBinarizer()
lb.fit(list(Class_dict.values()))
transformed_labels = lb.transform(IRIS['target'])
y_bin_labels = [] # 对多分类进行0-1编码的变量
for i in range(transformed_labels.shape[1]):
y_bin_labels.append('y' + str(i))
IRIS['y' + str(i)] = transformed_labels[:, i]
# 将数据集分为训练集和测试集
train_x, test_x, train_y, test_y = train_test_split(IRIS[features], IRIS[y_bin_labels], \
train_size=0.7, test_size=0.3, random_state=0)
return train_x, test_x, train_y, test_y, Class_dict
搭建DNN
接下来,笔者将展示如何利用Keras来搭建一个简单的深度神经网络(DNN)来解决这个多分类问题。我们要搭建的DNN的结构如下图所示:
我们搭建的DNN由输入层、隐藏层、输出层和softmax函数组成,其中输入层由4个神经元组成,对应IRIS数据集中的4个特征,作为输入向量,隐藏层有两层,每层分别有5和6个神经元,之后就是输出层,由3个神经元组成,对应IRIS数据集的目标变量的类别个数,最后,就是一个softmax函数,用于解决多分类问题而创建。
对应以上的DNN结构,用Keras来搭建的话,其Python代码如下:
import keras as K
# 2. 定义模型
init = K.initializers.glorot_uniform(seed=1)
simple_adam = K.optimizers.Adam()
model = K.models.Sequential()
model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, activation='relu'))
model.add(K.layers.Dense(units=6, kernel_initializer=init, activation='relu'))
model.add(K.layers.Dense(units=3, kernel_initializer=init, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=simple_adam, metrics=['accuracy'])
在这个模型中,我们选择的神经元激活函数为ReLU函数,损失函数为交叉熵(cross entropy),迭代的优化器(optimizer)选择Adam,最初各个层的连接权重(weights)和偏重(biases)是随机生成的。这样我们就讲这个DNN的模型定义完毕了。这么简单?Yes, that's it!
训练及预测
OK,定义完模型后,我们需要对模型进行训练、评估及预测。对于模型训练,我们每次训练的批数为1,共迭代100次,代码如下(接以上代码):
# 3. 训练模型
b_size = 1
max_epochs = 100
print("Starting training ")
h = model.fit(train_x, train_y, batch_size=b_size, epochs=max_epochs, shuffle=True, verbose=1)
print("Training finished \n")
为了对模型有个评估,感知模型的表现,需要输出该DNN模型的损失函数的值以及在测试集上的准确率,其Python代码如下(接以上代码):
# 4. 评估模型
eval = model.evaluate(test_x, test_y, verbose=0)
print("Evaluation on test data: loss = %0.6f accuracy = %0.2f%% \n" \
% (eval[0], eval[1] * 100) )
训练100次,输出的结果如下(中间部分的训练展示已忽略):
Starting training
Epoch 1/100
1/105 [..............................] - ETA: 17s - loss: 0.3679 - acc: 1.0000
42/105 [===========>..................] - ETA: 0s - loss: 1.8081 - acc: 0.3095
89/105 [========================>.....] - ETA: 0s - loss: 1.5068 - acc: 0.4270
105/105 [==============================] - 0s 3ms/step - loss: 1.4164 - acc: 0.4667
Epoch 2/100
1/105 [..............................] - ETA: 0s - loss: 0.4766 - acc: 1.0000
45/105 [===========>..................] - ETA: 0s - loss: 1.0813 - acc: 0.4889
93/105 [=========================>....] - ETA: 0s - loss: 1.0335 - acc: 0.4839
105/105 [==============================] - 0s 1ms/step - loss: 1.0144 - acc: 0.4857
......
Epoch 99/100
1/105 [..............................] - ETA: 0s - loss: 0.0013 - acc: 1.0000
43/105 [===========>..................] - ETA: 0s - loss: 0.0447 - acc: 0.9767
84/105 [=======================>......] - ETA: 0s - loss: 0.0824 - acc: 0.9524
105/105 [==============================] - 0s 1ms/step - loss: 0.0711 - acc: 0.9619
Epoch 100/100
1/105 [..............................] - ETA: 0s - loss: 2.3032 - acc: 0.0000e+00
51/105 [=============>................] - ETA: 0s - loss: 0.1122 - acc: 0.9608
99/105 [===========================>..] - ETA: 0s - loss: 0.0755 - acc: 0.9798
105/105 [==============================] - 0s 1ms/step - loss: 0.0756 - acc: 0.9810
Training finished
Evaluation on test data: loss = 0.094882 accuracy = 97.78%
可以看到,训练完100次后,在测试集上的准确率已达到97.78%,效果相当好。
最后是对新数据集进行预测,我们假设一朵鸢尾花的4个特征为6.1,3.1,5.1,1.1,我们想知道这个DNN模型会把它预测到哪一类,其Python代码如下:
import numpy as np
# 5. 使用模型进行预测
np.set_printoptions(precision=4)
unknown = np.array([[6.1, 3.1, 5.1, 1.1]], dtype=np.float32)
predicted = model.predict(unknown)
print("Using model to predict species for features: ")
print(unknown)
print("\nPredicted softmax vector is: ")
print(predicted)
species_dict = {v:k for k,v in Class_dict.items()}
print("\nPredicted species is: ")
print(species_dict[np.argmax(predicted)])
输出的结果如下:
Using model to predict species for features:
[[ 6.1 3.1 5.1 1.1]]
Predicted softmax vector is:
[[ 2.0687e-07 9.7901e-01 2.0993e-02]]
Predicted species is:
versicolor
如果我们仔细地比对IRIS数据集,就会发现,这个预测结果令人相当满意,这个鸢尾花样本的预测结果,以人类的眼光来看,也应当是versicolor。
总结
到此为止,笔者就把这个演示例子给讲完了,作为入门Keras的第一步,这个例子还是可以的。回顾该模型,首先我们利用Pandas读取IRIS数据集,并分为训练集和测试集,然后用Keras搭建了一个简单的DNN模型,并对该模型进行训练及评估,最后看一下该模型在新数据集上的预测能力。从中,读者不难体会到Keras的优越性,因为,相比TensorFlow,搭建同样的DNN模型及模型训练、评估、预测,其Python代码无疑会比Keras来得长。
最后,附上该DNN模型的完整Python代码:
# iris_keras_dnn.py
# Python 3.5.1, TensorFlow 1.6.0, Keras 2.1.5
# ========================================================
# 导入模块
import os
import numpy as np
import keras as K
import tensorflow as tf
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
# 读取CSV数据集,并拆分为训练集和测试集
# 该函数的传入参数为CSV_FILE_PATH: csv文件路径
def load_data(CSV_FILE_PATH):
IRIS = pd.read_csv(CSV_FILE_PATH)
target_var = 'class' # 目标变量
# 数据集的特征
features = list(IRIS.columns)
features.remove(target_var)
# 目标变量的类别
Class = IRIS[target_var].unique()
# 目标变量的类别字典
Class_dict = dict(zip(Class, range(len(Class))))
# 增加一列target, 将目标变量进行编码
IRIS['target'] = IRIS[target_var].apply(lambda x: Class_dict[x])
# 对目标变量进行0-1编码(One-hot Encoding)
lb = LabelBinarizer()
lb.fit(list(Class_dict.values()))
transformed_labels = lb.transform(IRIS['target'])
y_bin_labels = [] # 对多分类进行0-1编码的变量
for i in range(transformed_labels.shape[1]):
y_bin_labels.append('y' + str(i))
IRIS['y' + str(i)] = transformed_labels[:, i]
# 将数据集分为训练集和测试集
train_x, test_x, train_y, test_y = train_test_split(IRIS[features], IRIS[y_bin_labels], \
train_size=0.7, test_size=0.3, random_state=0)
return train_x, test_x, train_y, test_y, Class_dict
def main():
# 0. 开始
print("\nIris dataset using Keras/TensorFlow ")
np.random.seed(4)
tf.set_random_seed(13)
# 1. 读取CSV数据集
print("Loading Iris data into memory")
CSV_FILE_PATH = 'E://iris.csv'
train_x, test_x, train_y, test_y, Class_dict = load_data(CSV_FILE_PATH)
# 2. 定义模型
init = K.initializers.glorot_uniform(seed=1)
simple_adam = K.optimizers.Adam()
model = K.models.Sequential()
model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, activation='relu'))
model.add(K.layers.Dense(units=6, kernel_initializer=init, activation='relu'))
model.add(K.layers.Dense(units=3, kernel_initializer=init, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=simple_adam, metrics=['accuracy'])
# 3. 训练模型
b_size = 1
max_epochs = 100
print("Starting training ")
h = model.fit(train_x, train_y, batch_size=b_size, epochs=max_epochs, shuffle=True, verbose=1)
print("Training finished \n")
# 4. 评估模型
eval = model.evaluate(test_x, test_y, verbose=0)
print("Evaluation on test data: loss = %0.6f accuracy = %0.2f%% \n" \
% (eval[0], eval[1] * 100) )
# 5. 使用模型进行预测
np.set_printoptions(precision=4)
unknown = np.array([[6.1, 3.1, 5.1, 1.1]], dtype=np.float32)
predicted = model.predict(unknown)
print("Using model to predict species for features: ")
print(unknown)
print("\nPredicted softmax vector is: ")
print(predicted)
species_dict = {v:k for k,v in Class_dict.items()}
print("\nPredicted species is: ")
print(species_dict[np.argmax(predicted)])
main()
参考文献
- Keras中文文档: https://keras-cn.readthedocs.io/en/latest/
- Keras Succinctly: http://ebooks.syncfusion.com/downloads/keras-succinctly/keras-succinctly.pdf?AWSAccessKeyId=AKIAJ5W3G2Z6F2ZHAREQ&Expires=1539315050&Signature=r6qJ%2BP7KUEU442WMObSLd2%2Flkqw%3D
- IRIS数据集: http://archive.ics.uci.edu/ml/machine-learning-databases/iris/
注意:本人现已开通微信公众号: Python爬虫与算法(微信号为:easy_web_scrape), 欢迎大家关注哦~~
Keras入门(一)搭建深度神经网络(DNN)解决多分类问题的更多相关文章
- 深度神经网络DNN的多GPU数据并行框架 及其在语音识别的应用
深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能 ...
- 深度学习:Keras入门(二)之卷积神经网络(CNN)
说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式 ...
- 深度学习:Keras入门(二)之卷积神经网络(CNN)【转】
本文转载自:https://www.cnblogs.com/lc1217/p/7324935.html 说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么 ...
- 深度学习:Keras入门(二)之卷积神经网络(CNN)(转)
转自http://www.cnblogs.com/lc1217/p/7324935.html 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的 ...
- 一天搞懂深度学习-训练深度神经网络(DNN)的要点
前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...
- 使用NetworkX模块绘制深度神经网络(DNN)结构图
本文将展示如何利用Python中的NetworkX模块来绘制深度神经网络(DNN)结构图. 在文章Keras入门(一)搭建深度神经网络(DNN)解决多分类问题中,我们创建的DNN结构图如下: ...
- 神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId ...
- 深度神经网络(DNN)模型与前向传播算法
深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结. 1. 从感知机 ...
- 深度神经网络(DNN)
深度神经网络(DNN) 深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一 ...
随机推荐
- 0x66 Tarjan算法与无向图连通性(1)
……是什么? 给定无向连通图G=(V,E)(不一定连通); 割点:若对于x∈V,从图中删去节点x以及所有与x关联的边后,G分裂成两个或两个以上不相连的子图,则称x为G的割点. 桥(割边):若对于e∈E ...
- CentOS 7 用firewall-cmd来开放端口
2.CentOS 7 用firewall-cmd来开放端口 如: firewall-cmd --permanent --add-port=3306/tcp 重新加载 firewall-cmd --re ...
- php中测试运行的时间,从而选择得出优化程序
对于新手来说,优化代码的习惯十分重要, 测试运行的时间,从而得出最好的一个 <?php $t1=microtime(true); //获取程序1,开始的时间 程序1(代码...) $t2=m ...
- Python核心团队计划2020年停止支持Python2,NumPy宣布停止支持计划表
Python核心团队计划在2020年停止支持Python 2.NumPy项目自2010年以来一直支持Python 2和Python 3,并且发现支持Python 2对我们有限的资源增加了负担:因此,我 ...
- ie页面数据导入共享版
为了解决自动输入号码的正确率,原来的版本一直采用鼠标检测的方法.但是这个方法在其他ie平台的使用不太方便.于是直接检测ie的方法.现在的这个版本完全不需要鼠标的检测.方便而且快速精准可靠. 经过作者的 ...
- Linux安装gcc/g++
直接使用yum安装 yum install gcc yum -y install gcc-c++ 如果为RedHat yum需要注册 可以参考更换yum源 https://www.cnblogs.c ...
- 吴恩达机器学习笔记37-学习曲线(Learning Curves)
学习曲线就是一种很好的工具,我经常使用学习曲线来判断某一个学习算法是否处于偏差.方差问题.学习曲线是学习算法的一个很好的合理检验(sanity check).学习曲线是将训练集误差和交叉验证集误差作为 ...
- Inotify+Rsync实现Linux服务器文件同步
做这个功能的时候遇到了好多坑,在此感谢一下这篇博客 http://kerry.blog.51cto.com/172631/734087/ ,大家参照这篇博客就能实现该功能. 另外如果想详细了解一下的 ...
- vsftp搭建文档
vsftpd端口的作用:控制连接:tcp21端口用于发送FTP命令数据连接:tcp20端口用于上传下载数据 传输模式:分为主动模式和被动模式主动模式是当需要传输数据时,客户端以PORT命令告知服务器, ...
- java 实现一个beautiful的弹层和具体功能
先看一下弹层的效果: 点击确定跳转百度页面,点击取消弹层消失. 我这个弹层是在layui找的, 1. 需要layui.css文件和layui.js文件 (想我这样笨的人,没有同学的告知,我都不知道去哪 ...