题意:求一个字符串中有多少形如AABB的子串。

解:嗯...我首先极度SB的想了一个后缀自动机套线段树启发式合并的做法,想必会TLE。

然后跑去看题解,发现实在是妙不可言...

显然要对每个位置求出向左有多少个AA,向右有多少个BB。

我的想法是对于每个前缀,两两求lca,如果lca的len大于他们的位置之差,显然就有一组了。

这时候把贡献加到其中较长的前缀上。然后反着来一遍就行了。

怎么批量求lca和贡献呢?

考虑计算每个点作为lca时的贡献,显然线段树维护子树内有哪些前缀。合并的时候好像没啥好的办法...但是我们有启发式合并!

每次取出小的线段树中的所有元素,依次加入大的线段树中。对于大的线段树中比它小的一段区间内的元素,我们要给它自己加上贡献。对于比它大的一段区间中的元素,要给那些大的元素每个+1贡献。我们就在每次需要插入元素的时候往下推。推到底的时候加贡献即可。(应该支持吧...)

比较菜没写代码...感觉实现起来毒瘤的紧。

然后说正解。

考虑枚举AA串的长度。

对于一个长为2len的AA串,如果我们每隔len放一个点,那么这样的串将会且仅会覆盖两个连续的点。

对于每两个连续的点,我们求它们的最长公共前/后缀长度,分别设为x,y。

如果x + y >= len的话就是存在这样的AA串经过这两点。然后就是个线段树区间+1

最后遍历线段树统计答案即可。

求lcp不就是SAM的fail树上lca嘛,我会倍增!

Tnlog2n成功T飞...

然后就O(1)lca过了...果然O(1)lca还是有用的。

 #include <cstdio>
#include <cstring>
#include <algorithm> typedef long long LL;
const int N = ; char str[N];
int pos[N], pos2[N], pw[N * ], n; struct SAM { struct Edge {
int nex, v;
}edge[N]; int top; int tr[N][], fail[N], len[N], tot, last;
int ST[N * ][], pos[N * ], num, e[N], d[N]; SAM() {
tot = last = ;
} inline void add(int x, int y) {
top++;
edge[top].v = y;
edge[top].nex = e[x];
e[x] = top;
return;
} inline void insert(char c) {
int f = c - 'a';
int p = last, np = ++tot;
last = np;
len[np] = len[p] + ;
while(p && !tr[p][f]) {
tr[p][f] = np;
p = fail[p];
}
if(!p) {
fail[np] = ;
}
else {
int Q = tr[p][f];
if(len[Q] == len[p] + ) {
fail[np] = Q;
}
else {
int nQ = ++tot;
len[nQ] = len[p] + ;
fail[nQ] = fail[Q];
fail[Q] = fail[np] = nQ;
memcpy(tr[nQ], tr[Q], sizeof(tr[Q]));
while(tr[p][f] == Q) {
tr[p][f] = nQ;
p = fail[p];
}
}
}
} void DFS(int x) {
pos[x] = ++num;
ST[num][] = x;
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
d[y] = d[x] + ;
DFS(y);
ST[++num][] = x;
}
return;
} inline void prework() {
for(int i = ; i <= tot; i++) {
add(fail[i], i);
}
d[] = ;
DFS();
for(int j = ; j <= pw[num]; j++) {
for(int i = ; i + ( << j) - <= num; i++) {
if(d[ST[i][j - ]] <= d[ST[i + ( << (j - ))][j - ]]) {
ST[i][j] = ST[i][j - ];
}
else {
ST[i][j] = ST[i + ( << (j - ))][j - ];
}
}
}
return;
} inline int lca(int x, int y) {
x = pos[x];
y = pos[y];
if(x > y) {
std::swap(x, y);
}
int t = pw[y - x + ];
if(d[ST[x][t]] <= d[ST[y - ( << t) + ][t]]) {
return ST[x][t];
}
return ST[y - ( << t) + ][t];
} inline void clear() {
for(int i = ; i <= tot; i++) {
d[i] = e[i] = ;
for(int f = ; f < ; f++) {
tr[i][f] = ;
}
}
tot = last = ;
top = num = ;
return;
} inline int lcp(int x, int y) {
return std::min(std::min(len[x], len[y]), len[lca(x, y)]);
} }sam, sam2; struct SegmentTree {
int tag[N * ];
int f[N];
inline void pushdown(int o) {
if(!tag[o]) {
return;
}
tag[o << ] += tag[o];
tag[o << | ] += tag[o];
tag[o] = ;
return;
} void add(int L, int R, int l, int r, int o) {
if(L <= l && r <= R) {
tag[o]++;
return;
}
int mid = (l + r) >> ;
pushdown(o);
if(L <= mid) {
add(L, R, l, mid, o << );
}
if(mid < R) {
add(L, R, mid + , r, o << | );
}
return;
} void solve(int l, int r, int o) {
if(l == r) {
f[r] = tag[o];
return;
}
pushdown(o);
int mid = (l + r) >> ;
solve(l, mid, o << );
solve(mid + , r, o << | );
return;
}
void clear(int l, int r, int o) {
tag[o] = ;
if(l == r) {
return;
}
int mid = (l + r) >> ;
clear(l, mid, o << );
clear(mid + , r, o << | );
return;
}
}seg, seg2; inline void solve() {
scanf("%s", str);
LL ans = ;
n = strlen(str);
for(int i = ; i < n; i++) {
sam.insert(str[i]);
sam2.insert(str[n - i - ]);
pos[i] = sam.last;
pos2[n - i - ] = sam2.last;
}
sam.prework();
sam2.prework();
//
for(int len = ; (len << ) < n - ; len++) {
//printf("len = %d \n", len);
for(int i = len; i < n; i += len) {
// i i-len
//printf(" > %d %d \n", i - len, i);
int x = std::min(len, sam.lcp(pos[i], pos[i - len]));
int y = std::min(len, sam2.lcp(pos2[i], pos2[i - len]));
// x + y - len
//printf(" > x = %d y = %d \n", x, y);
if(x + y > len) {
seg.add(i - len - x + , i - len * + y + , , n, );
//printf(" > > > 1 add %d %d \n", i - len - x + 2, i - len * 2 + y + 1);
seg2.add(i + len - x + , i + y, , n, );
//printf(" > > > 2 add %d %d \n", i + len - x + 1, i + y);
}
}
}
seg.solve(, n, );
seg2.solve(, n, );
for(int i = ; i < n - ; i++) {
ans += 1ll * seg2.f[i] * seg.f[i + ];
//printf("ans += %d * %d \n", seg2.f[i], seg.f[i + 1]);
}
printf("%lld\n", ans);
return;
} int main() { for(int i = ; i < N * ; i++) {
pw[i] = pw[i >> ] + ;
}
int T;
scanf("%d", &T);
while(T--) {
solve();
if(T) {
sam.clear();
sam2.clear();
seg.clear(, n, );
seg2.clear(, n, );
}
}
return ;
}

AC代码

洛谷P1117 优秀的拆分的更多相关文章

  1. 洛谷P1117 优秀的拆分【Hash】【字符串】【二分】【好难不会】

    题目描述 如果一个字符串可以被拆分为AABBAABB的形式,其中 A和 B是任意非空字符串,则我们称该字符串的这种拆分是优秀的. 例如,对于字符串aabaabaaaabaabaa,如果令 A=aabA ...

  2. bzoj 4650 & 洛谷 P1117 优秀的拆分 —— 枚举关键点+后缀数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4650 https://www.luogu.org/problemnew/show/P1117 ...

  3. 洛谷 P2404 自然数的拆分问题

    题目链接 https://www.luogu.org/problemnew/show/P2404 题目背景 木有...... 题目描述 任何一个大于1的自然数n,总可以拆分成若干个小于n的自然数之和. ...

  4. 洛谷P1117 棋盘游戏

    洛谷1117 棋盘游戏 题目描述 在一个4*4的棋盘上有8个黑棋和8个白棋,当且仅当两个格子有公共边,这两个格子上的棋是相邻的.移动棋子的规则是交换相邻两个棋子.现在给出一个初始棋盘和一个最终棋盘,要 ...

  5. 洛谷——P2404 自然数的拆分问题

    题目背景 任何一个大于1的自然数n,总可以拆分成若干个小于n的自然数之和. 题目描述 任何一个大于1的自然数n,总可以拆分成若干个小于n的自然数之和. 输入输出格式 输入格式: 输入:待拆分的自然数n ...

  6. 【洛谷1117_BZOJ4650】[NOI2016] 优秀的拆分(哈希_后缀数组_RMQ)

    题目: 洛谷1117 分析: 定义把我校某兔姓神犇Tzz和他的妹子拆分,为"优秀的拆分" 随便写个哈希就能有\(95\)分的好成绩-- 我的\(95\)分做法比fei较chang奇 ...

  7. 洛谷4451 整数的lqp拆分(生成函数)

    比较水的一题.居然是一道没看题解就会做的黑题…… 题目链接:洛谷 题目大意:定义一个长度为 $m$ 的正整数序列 $a$ 的价值为 $\prod f_{a_i}$.($f$ 是斐波那契数)对于每一个 ...

  8. 洛谷:P3281 [SCOI2013]数数 (优秀的解法)

    刷了这么久的数位 dp ,照样被这题虐,还从早上虐到晚上,对自己无语...(机房里又是只有我一个人,寂寞.) 题目:洛谷P3281 [SCOI2013]数数 题目描述 Fish 是一条生活在海里的鱼, ...

  9. P1117 [NOI2016]优秀的拆分

    $ \color{#0066ff}{ 题目描述 }$ 如果一个字符串可以被拆分为\(AABB\)的形式,其中 A和 B是任意非空字符串,则我们称该字符串的这种拆分是优秀的. 例如,对于字符串\(aab ...

随机推荐

  1. C# Note30: 网络爬虫

    用C#实现网络爬虫(一) 用C#实现网络爬虫(二) 基于C#.NET的高端智能化网络爬虫(一)(反爬虫哥必看) 基于C#.NET的高端智能化网络爬虫(二)(攻破携程网) C#获取网页内容的三种方式

  2. Spirng boot maven多模块打包不踩坑

    本文参考 https://blog.csdn.net/Ser_Bad/article/details/78433340 经过实战一次通过.回话不多说,话费不多说,直接上图. 项目整体结构: 父模块: ...

  3. git(命令行常用炒作)

    Git常用操作 https://backlog.com/git-tutorial/cn/intro/intro1_1.html Git详解(思维导图) https://blog.csdn.net/hu ...

  4. linux 查看TCP端口

    如有转载,不胜荣幸.http://www.cnblogs.com/aaron-agu/ netstat –nat

  5. QTP 自动货测试桌面程序-笔记(添加控件仓库并关联到action)

    录制或编写脚本前先添加行为对应的控件仓库: 心得:多个测试action使用的同一个窗体的仓库单独放于一个仓库中,可以在多个action中添加关联使用 将同一个窗体的控件只放于一个仓库中,减少使用时的名 ...

  6. jquery获取select选择的文本与值

    jquery获取select选择的文本与值获取select :获取select 选中的 text :    $("#ddlregtype").find("option:s ...

  7. sed命令参数之-r -i

    对于初学linux的朋友来说,能记住命令附带的一大帮参数就以及非常不容易了.好不容易把该用的参数都想全了.sed -irns 后面一大片脚本 ,一执行出错了 what!!!! 创建一下测试环境 hea ...

  8. 实验吧 WEB 猫抓老鼠

    人生的第一道CTF题目哇,鸡冻 其实只是学了一下HTTP抓包得到的都是什么,就开始上手胡搞了 题目名字叫猫抓老鼠,还疯狂暗示catch!catch!catch!catch!,就想到要用抓包其实我是因为 ...

  9. 晨读笔记:CSS3选择器之属性选择器

    一.属性选择器 1.E[foo^="bar"]:该属性选择器描述的是选择属性以bar开头的元素,如: //所有以名称g_开头的div的字体颜色为红色div[name^=" ...

  10. IntelliJ cannot log in to GitHub上传github报错解决

    重装系统,新装的Intellij IDEA上新建的项目上传github失败,报错: invalid authentication token ... 此处多为本地git用户的用户名/邮箱,与之前设置的 ...