题目链接

BZOJ3456

题解

真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法

我们发现我们要求的是大小为\(n\)无向联通图的数量

而\(n\)个点的无向图是由若干个无向联通图构成的

那么我们设\(F(x)\)为无向联通图数量的指数型生成函数

设\(G(x)\)为无向图数量的指数型生成函数

\(G(x)\)很好求

\[G(x) = \frac{F(x)}{1!} + \frac{F^2(x)}{2!} + \frac{F^3(x)}{3!} + \dots = e^{F(x)}
\]

\[F(x) = lnG(x)
\]

多项式求\(ln\)即可

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 500005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
const int G = 3,P = 1004535809;
int R[maxn];
inline int qpow(int a,LL b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
void NTT(int* a,int n,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
int gn = qpow(G,(P - 1) / (i << 1));
for (int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k],y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
int n,c[maxn],f[maxn],g[maxn],Fv[maxn];
int fac[maxn],fv[maxn],inv[maxn];
void init(){
fac[0] = fac[1] = fv[0] = fv[1] = inv[0] = inv[1] = 1;
for (int i = 2; i <= (n << 1); i++){
fac[i] = 1ll * fac[i - 1] * i % P;
inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
fv[i] = 1ll * fv[i - 1] * inv[i] % P;
}
}
void Inv(int* a,int* b,int deg){
if (deg == 1){b[0] = qpow(a[0],P - 2); return;}
Inv(a,b,(deg + 1) >> 1);
int n = 1,L = 0;
while (n < (deg << 1)) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
for (int i = 0; i < deg; i++) c[i] = a[i];
for (int i = deg; i < n; i++) c[i] = 0;
NTT(c,n,1); NTT(b,n,1);
for (int i = 0; i < n; i++)
b[i] = 1ll * ((2ll - 1ll * c[i] * b[i] % P) + P) % P * b[i] % P;
NTT(b,n,-1);
for (int i = deg; i < n; i++) b[i] = 0;
}
void Der(int* a,int& n){
n--;
for (int i = 0; i <= n; i++) a[i] = 1ll * a[i + 1] * (i + 1) % P;
}
void Int(int* a,int& n){
n++;
for (int i = n; i; i--) a[i] = 1ll * a[i - 1] * inv[i] % P;
}
void Getln(int* a,int* b){
int deg = n;
Inv(a,Fv,n + 1);
Der(a,deg);
int m = deg + n,n = 1,L = 0;
while (n <= m) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(a,n,1); NTT(Fv,n,1);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * Fv[i] % P;
NTT(a,n,-1);
deg = m;
Int(a,deg);
for (int i = 0; i <= deg; i++) b[i] = a[i];
}
int main(){
n = read();
init();
f[0] = f[1] = 1;
for (int i = 2; i <= n; i++)
f[i] = 1ll * qpow(2,1ll * i * (i - 1) / 2) * fv[i] % P;
Getln(f,g);
printf("%lld\n",1ll * g[n] * fac[n] % P);
return 0;
}

BZOJ3456 城市规划 【多项式求ln】的更多相关文章

  1. bzoj3456 城市规划 多项式求In

    \(n\)个点的无向联通图的个数 打着好累啊 一定要封装一个板子 记\(C(x)\)为无向图个数的指数型生成函数,\(C(0) = 1\) 记\(G(x)\)为无向联通图个数的指数型生成函数,\(G( ...

  2. [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)

    城市规划 时间限制:40s      空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...

  3. 【BZOJ3456】轩辕朗的城市规划 EGF+多项式求ln

    我们构造$f(i)$和$g(i)$. 其中$f(x)$表示由$x$个节点构成的无向简单连通图的个数. $g(x)$表示有$x$个节点构成的无向简单图(不要求连通)的个数. 显然,由$x$个节点构成的无 ...

  4. BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]

    3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...

  5. bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...

  6. 【BZOJ】3456: 城市规划(多项式求ln)

    题解 在我写过分治NTT,多项式求逆之后 我又一次写了多项式求ln 我们定义一个数列的指数型生成函数为 \(\sum_{i = 0}^{n} \frac{A_{i}}{i!} x^{i}\) 然后这个 ...

  7. bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况: 而不连通的情况就是那个经典 ...

  8. 指数型生成函数 及 多项式求ln

    指数型生成函数 我们知道普通型生成函数解决的是组合问题,而指数型生成函数解决的是排列问题 对于数列\(\{a_n\}\),我们定义其指数型生成函数为 \[G(x) = a_0 + a_1x + a_2 ...

  9. 多项式求ln,求exp,开方,快速幂 学习总结

    按理说Po姐姐三月份来讲课的时候我就应该学了 但是当时觉得比较难加上自己比较懒,所以就QAQ了 现在不得不重新弄一遍了 首先说多项式求ln 设G(x)=lnF(x) 我们两边求导可以得到G'(x)=F ...

随机推荐

  1. Alibaba Cloud Toolkit for Eclipse & ECS、EDAS 或容器服务 Kubernetes

    UserGuide_V2.1.0http://toolkit.aliyun.com/eclipse/?spm=5176.2020520130.105.3.3c3b697bOHma9f&msct ...

  2. C# 和 c++的语法不同点

    GC  Garbage Collection 垃圾回收器 自动释放资源 关键字: new 1.创建对象 2.隐藏从父类继承的同名函数 using 1.引用命名空间 2. using(FileStrea ...

  3. 理解根目录,classpath, getClass().getResourceAsStream和getClass().getClassLoader().getResourceAsStream的区别

    一: 理解根目录 <value>classpath*:/application.properties</value> <value>classpath:/appli ...

  4. socket通信原理三次握手和四次握手详解

    对TCP/IP.UDP.Socket编程这些词你不会很陌生吧?随着网络技术的发展,这些词充斥着我们的耳朵.那么我想问: 1.         什么是TCP/IP.UDP?2.         Sock ...

  5. day 7-21 pymysql模块

    一.安装的两种方法 第一种: #安装 pip3 install pymysql 第二种: 二.链接,执行sql,关闭(游标) import pymysql user = input("use ...

  6. 6s ios9.0平台 微信小程序的fixed定位兼容性问题

    如果不设置top和left的话  就会出现不显示问题

  7. shell中数组及其相关操作

    转载 https://blog.csdn.net/jerry_1126/article/details/52027539

  8. vue樣式綁定

    vue的樣式可以使得class,style不僅可以綁定文本,而且可以綁定數組和對象. 使用對象{} 使用數組 綁定對象 使用computed屬性, 使用內聯樣式.

  9. 学习 Spring (一) Spring 介绍

    Spring入门篇 学习笔记 Spring 是什么 Spring 是一个轻量级的 IoC (控制反转)和 AOP (面向切面)的容器框架 框架与类库的区别 框架一般是封装了逻辑.高内聚的,类库则是松散 ...

  10. Vue学习目录

    前面的话 近年来,前端框架发展火热,新的框架和名词不停地出现在开发者眼前,而且开发模式也产生了一定的变化.目前来看,前端MVVM框架的出现给开发者带来了不小的便利,其中的代表就有Angular.js. ...