Spark笔记-repartition和coalesce
窄依赖、宽依赖以及stage的划分依据:https://www.cnblogs.com/itboys/p/6673046.html
参考: http://blog.csdn.net/u012684933/article/details/51028707
参考: http://blog.csdn.net/dax1n/article/details/53431373
参考: http://blog.csdn.net/qq_14950717/article/details/52871666
repartition(numPartitions:Int)和coalesce(numPartitions:Int,shuffle:Boolean=false)
作用:对RDD的分区进行重新划分,repartition内部调用了coalesce,参数shuffle为true
例:RDD有N个分区,需要重新划分成M个分区
1. N小于M
一般情况下N个分区有数据分布不均匀的状况,利用HashPartitioner函数将数据重新分区为M个,这时需要将shuffle设置为true。
2. N大于M且和M相差不多
假如N是1000,M是100)那么就可以将N个分区中的若干个分区合并成一个新的分区,最终合并为M个分区,这时可以将shuff设置为false,在shuffl为false的情况下,如果M>N时,coalesce为无效的,不进行shuffle过程,父RDD和子RDD之间是窄依赖关系。
3. N大于M且和M相差悬殊
这时如果将shuffle设置为false,父子RDD是窄依赖关系,他们在同一个Stage中,就可能造成Spark程序的并行度不够,从而影响性能,如果在M为1的时候,为了使coalesce之前的操作有更好的并行度,可以讲shuffle设置为true。
总结:返回一个减少到numPartitions个分区的新RDD,这会导致窄依赖,例如:你将1000个分区转换成100个分区,这个过程不会发生shuffle,相反如果10个分区转换成100个分区将会发生shuffle。然而如果你想大幅度合并分区,例如所有partition合并成一个分区,这会导致计算在少数几个集群节点上进行(言外之意:并行度不够)。为了避免这种情况,你可以将第二个shuffle参数传递一个true,这样会在重新分区过程中多一步shuffle,这意味着上游的分区可以并行运行。
总之:如果shuff为false时,如果传入的参数大于现有的分区数目,RDD的分区数不变,也就是说不经过shuffle,是无法将RDD的partition数变多的
Spark笔记-repartition和coalesce的更多相关文章
- Spark源码系列:DataFrame repartition、coalesce 对比
在Spark开发中,有时为了更好的效率,特别是涉及到关联操作的时候,对数据进行重新分区操作可以提高程序运行效率(很多时候效率的提升远远高于重新分区的消耗,所以进行重新分区还是很有价值的).在Spark ...
- Spark源码系列:RDD repartition、coalesce 对比
在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对R ...
- 大数据学习day23-----spark06--------1. Spark执行流程(知识补充:RDD的依赖关系)2. Repartition和coalesce算子的区别 3.触发多次actions时,速度不一样 4. RDD的深入理解(错误例子,RDD数据是如何获取的)5 购物的相关计算
1. Spark执行流程 知识补充:RDD的依赖关系 RDD的依赖关系分为两类:窄依赖(Narrow Dependency)和宽依赖(Shuffle Dependency) (1)窄依赖 窄依赖指的是 ...
- spark算子篇-repartition and coalesce
我们知道 RDD 是分区的,但有时候我们需要重新设置分区数量,增大还是减少需要结合实际场景,还有可以通过设置 RDD 分区数来指定生成的文件的数量 重新分区有两种方法:repartition and ...
- Spark笔记——技术点汇总
目录 概况 手工搭建集群 引言 安装Scala 配置文件 启动与测试 应用部署 部署架构 应用程序部署 核心原理 RDD概念 RDD核心组成 RDD依赖关系 DAG图 RDD故障恢复机制 Standa ...
- spark笔记 环境配置
spark笔记 spark简介 saprk 有六个核心组件: SparkCore.SparkSQL.SparkStreaming.StructedStreaming.MLlib,Graphx Spar ...
- Spark中repartition和partitionBy的区别
repartition 和 partitionBy 都是对数据进行重新分区,默认都是使用 HashPartitioner,区别在于partitionBy 只能用于 PairRDD,但是当它们同时都用于 ...
- 大数据学习——spark笔记
变量的定义 val a: Int = 1 var b = 2 方法和函数 区别:函数可以作为参数传递给方法 方法: def test(arg: Int): Int=>Int ={ 方法体 } v ...
- spark 笔记 16: BlockManager
先看一下原理性的文章:http://jerryshao.me/architecture/2013/10/08/spark-storage-module-analysis/ ,http://jerrys ...
随机推荐
- smarty模板基础----缓存数据
缓存数据,这个并不是暂存的缓存,而是写入了内存的缓存 通过一个例子来书写:缓存数据 一.书写php和html页面的基本功能 既然是用smarty模板,那么前端和后端要分开写了 (1)php页面 1 2 ...
- Linux Linux下最大文件描述符设置
Linux下最大文件描述符设置 by:授客 QQ:1033553122 1. 系统可打开最大文件描述符设置 查看系统可打开最大文件描述符 # cat /proc/sys/fs/file-max 6 ...
- Android 四大组件之broadcast的理解
Android广播的两种类型: 1.静态广播 2.动态广播 静态注册广播: Manifeast中的代码块: <receiver android:name=".broadcast.MyS ...
- Java的优先级任务队列的实践
队列的基本理解 在说队列之前说两个名词:Task是任务,TaskExecutor是任务执行器 而我们今天要说的队列就完全符合某机构这个情况,队列在有Task进来的时候TaskExecutor就立刻开始 ...
- 解决Chrome与jQuery菜单兼容问题
题外,Chrome最近在耗电量方面超过了Edge,不过内存占用还是高啊,开发时偶尔用用.这不,http://jqueryui.com/menu/的官方菜单都支持的不好,改改吧! 打开jquery-ui ...
- java中获取系统的当前时间
转自:http://www.cnblogs.com/Matrix54/archive/2012/05/01/2478158.html 一. 获取当前系统时间和日期并格式化输出: import java ...
- 方法调用 Controller的Action 参数
using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...
- [20181229]关于字符串的分配问题.txt
[20181229]关于字符串的分配问题.txt --//链接:http://www.itpub.net/thread-2107534-1-1.html提到的问题,里面一段英文读起来很绕口:--//百 ...
- ASP.NET MVC之从控制器传递数据到视图方式
为了演示,先定义一个类 新建基本项目在Models文件夹下定义如下类: public class Person { public int Id { get; set; } public string ...
- PostgreSQL分页
转自 https://blog.csdn.net/tomcat_2014/article/details/49947711 如果用过mysql,那么对 select * from xxx limit ...