2019.03.28 bzoj3597: [Scoi2014]方伯伯运椰子(01分数规划)
传送门
题意咕咕咕有点麻烦不想写
思路:
考虑加了多少一定要压缩多少,这样可以改造边。
于是可以通过分数规划+spfaspfaspfa解决。
代码:
#include<bits/stdc++.h>
#define ri register int
#define fi first
#define se second
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
static char buf[rlen],*ib,*ob;
(ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
return ib==ob?-1:*ib++;
}
inline int read(){
int ans=0;
char ch=gc();
while(!isdigit(ch))ch=gc();
while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=gc();
return ans;
}
const int N=10005,M=15005;
const double eps=1e-3;
typedef pair<int,double> pii;
vector<pii>e[N];
int n,m;
bool in[N];
double dis[N];
inline bool dfs(int p){
in[p]=1;
for(ri i=0,v;i<e[p].size();++i){
if(dis[v=e[p][i].fi]>dis[p]+e[p][i].se){
if(dis[v]=dis[p]+e[p][i].se,in[v])return 1;
if(dfs(v))return 1;
}
}
return in[p]=0;
}
inline bool check(double tmp){
for(ri i=1;i<=n+2;++i){
for(ri j=0;j<e[i].size();++j)e[i][j].se+=tmp;
dis[i]=0,in[i]=0;
}
bool ret=0;
for(ri i=1;i<=n+2;++i)if(dfs(i)){ret=1;break;}
for(ri i=1;i<=n+2;++i)for(ri j=0;j<e[i].size();++j)e[i][j].se-=tmp;
return ret;
}
int main(){
n=read();
for(ri tt=read(),u,v,a,b,c,d;tt;--tt){
u=read(),v=read(),a=read(),b=read(),c=read(),d=read();
e[u].push_back(pii(v,b+d));
if(c)e[v].push_back(pii(u,a-d));
}
double l=0,r=1000;
while(r-l>=eps){
double mid=(l+r)/2;
if(check(mid))l=mid;
else r=mid;
}
printf("%.2lf",l);
return 0;
}
2019.03.28 bzoj3597: [Scoi2014]方伯伯运椰子(01分数规划)的更多相关文章
- bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 594 Solved: 360[Submit][Statu ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]
3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...
- BZOJ3597 SCOI2014方伯伯运椰子(分数规划+spfa)
即在总流量不变的情况下调整每条边的流量.显然先二分答案变为求最小费用.容易想到直接流量清空跑费用流,但复杂度略有些高. 首先需要知道(不知道也行?)一种平时基本不用的求最小费用流的算法——消圈法.算法 ...
- 【BZOJ3597】方伯伯运椰子(分数规划,网络流)
[BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...
- BZOJ3597 [Scoi2014]方伯伯运椰子 【二分 + 判负环】
题目链接 BZOJ3597 题解 orz一眼过去一点思路都没有 既然是流量网络,就要借鉴网络流的思想了 我们先处理一下那个比值,显然是一个分数规划,我们二分一个\(\lambda = \frac{X ...
- 2019.03.28 bzoj3594: [Scoi2014]方伯伯的玉米田(二维bit优化dp)
传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5 ...
- 2019.03.28 bzoj3598: [Scoi2014]方伯伯的商场之旅(带权中位数+数位dp)
传送门 题意咕咕咕自己读吧挺简单的 思路: 由带权中位数的性质可以得到对于每个数放在每个二进制位的代价一定是个单调或者单峰函数,因此我们先把所有的数都挪到第一个位置,然后依次向右枚举峰点(极值点)把能 ...
- 2019.03.28 bzoj3595: [Scoi2014]方伯伯的Oj(splay+map+set)
传送门 题意简述: 给一个有优先级的nnn个人的序列,初始的时候第iii个人排名为iii,现在有mmm个操作,种类如下: 把编号为xxx的改成yyy,输出改前xxx的排名 把编号为xxx放到队首,输出 ...
- Bzoj3597: [Scoi2014]方伯伯运椰子
题面 传送门 Sol 消圈定理:如果一个费用流网络的残量网络有负环,那么这个费用流不优 于是这个题就可以建出残量网络,然后分数规划跑负环了 # include <bits/stdc++.h> ...
随机推荐
- 常用mvn坐标
mysql-connector <dependency> <groupId>mysql</groupId> <artifactId>mysql-conn ...
- query did not return a unique result: 2错误的发生
org.springframework.dao.IncorrectResultSizeDataAccessException: query did not return a unique result ...
- Spring再接触 整合Hibernate
首先更改配置文件 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http ...
- 在类文件中创建 写入Json文件
由于业务需要 今天写了一个方法能够定时更新Json文件 即定时从数据库中查询数据 然后转化为Json对象 如果有数据的话 删掉之前的Json文件 重新创建一个文件 然后写入Json对象 中间走了很多弯 ...
- form表单的三个属性 action 、mothod 、 enctype。
form_action: 表单数据提交到此页面 下面的表单拥有两个输入字段以及一个提交按钮,当提交表单时,表单数据会提交到名为 "form_action.asp" 的页面: < ...
- Linux root目录下.gvfs问题处理
最近收到一些关于磁盘的告警. 查了一下相关的信息. 知道了.gvfs文件夹是GNOME桌面系统的虚拟文件系统.可能是一些其它远程桌面之前连接所产生的一个文件,确定没有人再远程后.可以手动干掉它. 通过 ...
- icons 在线网站
icons https://www.iconfinder.com/ http://v3.bootcss.com/components/ http://fontawesome.io/icons/ htt ...
- Oracle导入建表的sql文件类型
- jq动画设置图片抽奖
(因为自己是前端刚入门的小白所以中间出现很多问题,不过这对于我来说就是一次经验的积累) 预想效果:点击"开始",图片循环旋转,不是同时的效果,而是有一定的时间差.点击"开 ...
- java中LIst转换成Json
List转换成json串 public String getNameListByID(Long Id) { List<Name> nameLists= nameService.select ...