嘟嘟嘟




裸的矩阵快速幂,构造一个\((k + 1) * (k + 1)\)的矩阵,把sum[n]也放到矩阵里面就行了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 18;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} ll l, r, mod, sum[maxn];
int K, Max;
int b[maxn], c[maxn];
struct Mat
{
ll a[maxn][maxn];
In Mat operator * (const Mat& oth)const
{
static Mat ret; Mem(ret.a, 0);
for(int i = 0; i <= Max; ++i)
for(int j = 0; j <= Max; ++j)
for(int k = 0; k <= Max; ++k) ret.a[i][j] += a[i][k] * oth.a[k][j], ret.a[i][j] %= mod;
return ret;
}
}f; In void init()
{
for(int i = 1; i <= K; ++i) sum[i] = (sum[i - 1] + b[i]) % mod;
Max = K; Mem(f.a, 0); f.a[0][0] = 1;
for(int i = 1; i <= Max; ++i) f.a[0][i] = f.a[1][i] = c[i];
for(int i = 2; i <= K; ++i) f.a[i][i - 1] = 1;
} In Mat quickpow(Mat A, ll b)
{
Mat ret; Mem(ret.a, 0);
for(int i = 0; i <= Max; ++i) ret.a[i][i] = 1;
for(; b; b >>= 1, A = A * A)
if(b & 1) ret = ret * A;
return ret;
} In ll solve(ll n)
{
if(n <= K) return sum[n];
n -= K;
Mat A = quickpow(f, n);
ll ret = sum[K];
for(int i = 1; i <= K; ++i) ret = (ret + A.a[0][i] * b[K - i + 1] % mod) % mod;
return ret;
} int main()
{
K = read();
for(int i = 1; i <= K; ++i) b[i] = read();
for(int i = 1; i <= K; ++i) c[i] = read();
l = read(), r = read(), mod = read();
init();
write((solve(r) - solve(l - 1) + mod) % mod), enter;
return 0;
}

[SDOI2008]递归数列的更多相关文章

  1. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  2. BZOJ3231: [Sdoi2008]递归数列

    BZOJ3231: [Sdoi2008]递归数列 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + ...

  3. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

  4. 开始玩矩阵了!先来一道入门题![SDOI2008]递归数列

    [SDOI2008]递归数列 题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + c ...

  5. P2461 [SDOI2008]递归数列

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj 和 cj ...

  6. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

  7. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  8. [luogu2461 SDOI2008] 递归数列 (矩阵乘法)

    传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...

  9. BZOJ 3231: [Sdoi2008]递归数列 (JZYZOJ 1353) 矩阵快速幂

    http://www.lydsy.com/JudgeOnline/problem.php?id=3231   和斐波那契一个道理在最后加一个求和即可 #include<cstdio> #i ...

随机推荐

  1. Java win7或 xp下配置JDK环境变量

    JAVA win7或 xp下配置JDK环境变量 by:授客 QQ:1033553122 1.安装JDK,安装过程中可以自定义安装目录等信息,例如我们选择安装目录为D:\java\jdk1.5.0_08 ...

  2. mybatis加载属性

    1): <dataSource>的<property>标签加载属性 在 properties 元素体内定义的属性首先被读取 然后会读取 properties 元素中 resou ...

  3. C#导入Excel、Excel导入、导入.xls 、导入.xlsx、Excel2003版本、Excel2007版本

    C#导入Excel: 1.选择Excel 03版文件 2.选择需要读取数据的Excel工作表   3.选择工作表中需要读取的列 源码地址在图片下面,不要点击图片,点击下载地址跳转下载.

  4. UOJ#310. 【UNR #2】黎明前的巧克力(FWT)

    题意 题目链接 Sol 挂一个讲的看起来比较好的链接 然鹅我最后一步还是没看懂qwq.. 坐等SovietPower大佬发博客 #include<bits/stdc++.h> using ...

  5. AI产品经理成长路

    AI产品经理成长路 https://www.jianshu.com/p/4b98314ad3c0 以下都是自己平时知识的一些总结,只是一些个人的愚见,下面出现的公司.书籍.视频.网站都是自己看过体验过 ...

  6. 解决在TP5中无法使用快递鸟的即时查询API

    快递鸟的接口对接其实很简单,先去官网注册账号,登陆把基本信息填好,然后在产品管理中订购一下“物流查询”,免费,不过其他产品是收费,免费的有对接口调用频率限制,结合自己的应用流量够用就可以. 使用前复制 ...

  7. iOS---------如何搭建ipv6环境

    第一步:首先打开共享 第二步:点击互联网共享,然后按option键.会出现创建NAT64网络 第三步:点击Wi-Fi共享,设置网络名称,频段:11.安全性:WPA2个人级.密码设置8位就可以了.然后在 ...

  8. html + css3 demo

    最近,在做一个比较大的网站,主要服务于欧美地区,全站为英文版本,因为是电子产品,因此,要展示产品内在美(扯个蛋!)仿照小米.錘子.苹果等网站,着重于css3动效效果,搜集整理了一些网站中用到的动效图, ...

  9. mysql之全球化和本地化:字符集、校对集、中文编码问题

    本文内容: 什么是字符集?什么是校对集? 查看字符集和校对集 设置字符集和校对集 mysql中的中文数据问题 首发日期:2018-04-19 什么是字符集?什么是校对集? 字符集是字母和符号的集合,每 ...

  10. Python minidom模块(DOM写入和解析XML)

    一.DOM写XML文件 #导入minidom from xml.dom import minidom # 1.创建DOM树对象 dom=minidom.Document() # 2.创建根节点.每次都 ...