1、MCMC概述

  从名字我们可以看出,MCMC由两个MC组成,即蒙特卡罗方法(Monte Carlo Simulation,简称MC)和马尔科夫链(Markov Chain ,也简称MC)。之前已经介绍过蒙特卡洛方法,接下来介绍马尔科夫链,以及结合两者的采样算法。

2、马尔科夫链

  马尔科夫链的概念在很多地方都被提及过,它的核心思想是某一时刻状态转移的概率只依赖于它的前一个状态。  

  我们用数学定义来描述,则假设我们的序列状态是...Xt2, Xt1, Xt, Xt+1,...,那么我们的在时刻Xt+1的状态的条件概率仅仅依赖于时刻Xt,即:

  

  既然某一时刻状态转移的概率只依赖于它的前一个状态,那么我们只要能求出系统中任意两个状态之间的转换概率,这个马尔科夫链的模型就定了。状态转移情况如下图所示

  

  则状态转移矩阵可以表示为

  

  此时,我们给定一个初始状态,然后经过该状态转移矩阵的转换,最终会收敛到一个稳定的状态,具体如马尔科夫链定理所示

  

  由于马尔科夫链能收敛到平稳分布, 于是有了一个想法:如果我们能构造一个转移矩阵为P的马氏链,使得该马氏链的平稳分布恰好是p(x), 那么我们从任何一个初始状态x0出发沿着马氏链转移, 得到一个转移序列 x0, x1, x2,⋯xn, xn+1⋯, 如果马氏链在第n步已经收敛了,于是我们就得到了 π(x) 的样本xn, xn+1⋯(也就是从第n步收敛时开始,之后的x都服从同一个平稳分布,我们可以将这个分布设定为我们的目标采样分布)。

  从上面可以看出马尔科夫链的平稳分布收敛主要依赖于状态转移矩阵,所以关键是如何构建状态转移矩阵,使得最终的平稳分布是我们所要的分布。想做到这一点主要依赖于细致平稳定理

  

3、MCMC采样和M-H采样

  在MCMC采样中先随机一个状态转移矩阵Q,然而该矩阵不一定能满足细致平稳定理,一次会做一些改进,具体过程如下

  

  MCMC采样算法的具体流程如下

  

  然而关于MCMC采样有收敛太慢的问题,所以在MCMC的基础上进行改进,引出M-H采样算法

  

  M-H算法的具体流程如下

  

  M-H算法在高维时同样适用

  

  一般来说M-H采样算法较MCMC算法应用更广泛,然而在大数据时代,M-H算法面临着两个问题:

  1)在高维时的计算量很大,算法效率很低,同时存在拒绝转移的问题,也会加大计算量

  2)由于特征维度大,很多时候我们甚至很难求出目标的各特征维度联合分布,但是可以方便求出各个特征之间的条件概率分布(因此就思考是否能只知道条件概率分布的情况下进行采样)。

4、Gibbs采样

  

  

  因此可以得出在二维的情况下Gibbs采样算法的流程如下

  

  而在多维的情况下,比如一个n维的概率分布π(x1, x2, ...xn),我们可以通过在n个坐标轴上轮换采样,来得到新的样本。对于轮换到的任意一个坐标轴xi上的转移,马尔科夫链的状态转移概率为P(xi|x1, x2, ..., xi1, xi+1, ..., xn),即固定n−1个坐标轴,在某一个坐标轴上移动。而在多维的情况下Gibbs采样算法的流程如下

  

  由于Gibbs采样在高维特征时的优势,目前我们通常意义上的MCMC采样都是用的Gibbs采样。当然Gibbs采样是从M-H采样的基础上的进化而来的,同时Gibbs采样要求数据至少有两个维度,一维概率分布的采样是没法用Gibbs采样的,这时M-H采样仍然成立。

机器学习之MCMC算法的更多相关文章

  1. 【原创】机器学习之PageRank算法应用与C#实现(2)球队排名应用与C#代码

    在上一篇文章:机器学习之PageRank算法应用与C#实现(1)算法介绍 中,对PageRank算法的原理和过程进行了详细的介绍,并通过一个很简单的例子对过程进行了讲解.从上一篇文章可以很快的了解Pa ...

  2. 【原创】机器学习之PageRank算法应用与C#实现(1)算法介绍

    考虑到知识的复杂性,连续性,将本算法及应用分为3篇文章,请关注,将在本月逐步发表. 1.机器学习之PageRank算法应用与C#实现(1)算法介绍 2.机器学习之PageRank算法应用与C#实现(2 ...

  3. 机器学习十大算法之KNN(K最近邻,k-NearestNeighbor)算法

    机器学习十大算法之KNN算法 前段时间一直在搞tkinter,机器学习荒废了一阵子.如今想重新写一个,发现遇到不少问题,不过最终还是解决了.希望与大家共同进步. 闲话少说,进入正题. KNN算法也称最 ...

  4. 机器学习中的算法-决策树模型组合之随机森林与GBDT

    机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使 ...

  5. 机器学习十大算法 之 kNN(一)

    机器学习十大算法 之 kNN(一) 最近在学习机器学习领域的十大经典算法,先从kNN开始吧. 简介 kNN是一种有监督学习方法,它的思想很简单,对于一个未分类的样本来说,通过距离它最近的k个" ...

  6. MCMC算法解析

    MCMC算法的核心思想是我们已知一个概率密度函数,需要从这个概率分布中采样,来分析这个分布的一些统计特性,然而这个这个函数非常之复杂,怎么去采样?这时,就可以借助MCMC的思想. 它与变分自编码不同在 ...

  7. IRT模型的参数估计方法(EM算法和MCMC算法)

    1.IRT模型概述 IRT(item response theory 项目反映理论)模型.IRT模型用来描述被试者能力和项目特性之间的关系.在现实生活中,由于被试者的能力不能通过可观测的数据进行描述, ...

  8. 【转载】NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩、机器学习及最优化算法

    原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自 ...

  9. 机器学习&深度学习基础(机器学习基础的算法概述及代码)

    参考:机器学习&深度学习算法及代码实现 Python3机器学习 传统机器学习算法 决策树.K邻近算法.支持向量机.朴素贝叶斯.神经网络.Logistic回归算法,聚类等. 一.机器学习算法及代 ...

随机推荐

  1. 【Java每日一题】20170217

    20170216问题解析请点击今日问题下方的“[Java每日一题]20170217”查看(问题解析在公众号首发,公众号ID:weknow619) package Feb2017; public cla ...

  2. 我永远喜欢着OOP——第一次总结

    我永远喜欢着OOP--第一次总结 一.三次作业总结分析 1. 第一次作业 1.1 作业分析 第一作业主要是给我们引入了一个对于非法输入处理的思想,包括第一次上机,都一直围绕着一个全新的主题,就是非法输 ...

  3. 数据结构——基于java的链表实现(真正理解链表这种数据结构)

    原创不易,如需转载,请注明出处https://www.cnblogs.com/baixianlong/p/10759599.html,否则将追究法律责任!!! 一.链表介绍 1.什么是链表? 链表是一 ...

  4. markdown基础入门

    一.标题 语法:# 文字 注意:1个#号代表标题1,两个代表标题2,依次类推 # 标题1 ## 标题2 ### 标题3 #### 标题4 ##### 标题5 ###### 标题6 二.加粗,斜体 语法 ...

  5. JVM-Ubuntu18.04.1下编译OpenJDK8

    近期开始学习JVM,看的是周老师的<深入理解Java虚拟机>,打算先自己编译个JDK来提升对JVM的兴趣.本文分三部分来描述编译OpenJDK的过程,分别是编译前准备工作.构建编译环境.进 ...

  6. JavaScript如何工作:内存管理+如何处理4个常见的内存泄漏

    摘要: 作者将自己常用的JavaScript模块分享给大家. 原文:JavaScript如何工作:内存管理+如何处理4个常见的内存泄漏 作者:前端小智 Fundebug经授权转载,版权归原作者所有. ...

  7. git 入门教程之撤销更改

    撤销更改 相信你已经了解了 git 的基本概念,也清楚了工作区,暂存区和版本库的关系,现在让我们用所学的知识继解决实际问题吧! 背景 正常看得见的目录是我们最为熟悉的工作区,在工作中不可能总是100% ...

  8. DataGridView的单元格如何嵌入多个按钮控件

    前段时间我有一个朋友面试公司的时候遇到这个面试题,他也给了份原题给我瞧瞧,并没有什么特别的要点,关于这一类问题,如何在网格上的单元格嵌入多个控件(如按钮.超链接等)问题,我在网上搜索了下这类问题,发现 ...

  9. PhpStorm和WAMP配置调试参数,问题描述Error. Interpreter is not specified or invalid. Press “Fix” to edit your project configuration.

    PhpStorm和WAMP配置调试参数,解决实际问题. 问题描述: Error. Interpreter is not specified or invalid. Press "Fix&qu ...

  10. weblogic的web.xml报错----Malformed UTF-8 char -- is an XML encoding declaration missing

    weblogic报错: Malformed UTF-8 char -- is an XML encoding declaration missing 把编码修改成utf8,上传到weblogic就报这 ...