本文篇幅较长,分为上,中,下,三个部分进行连载。内容分别为:AIOps 背景/所应具备技术能力分析(上)AIOps 常见的误解(中),挑战及建议(下)

前言

我大概是 5,6 年前开始接触 ITOA 这个领域的,首次接触后,发现领域有着巨大的潜力,一直寻找在这个领域做点事情的机会。大约三年前在这个领域创业,积极寻求 Product Market Fit。这几年下来,经过与行业内的专家交流,研读报告,阅读论文,客户访谈,亲自动手对相应的运维场景解析,行业产品的试用调研,以及结合着中国运维市场现状,撰写了此文。本人才疏学浅,不学无术,欢迎拍砖。

我们第一部分主要讲到了AIOps 的背景以及所需要的能力,我们这部分主要讲误解。

 

对 AIOps 误解:

AIOps 等于可以减少人力资源的投入

  • AIOps 不等于无人值守;

  • AIOps 不等于 NoOps;

  • AIOps 不等于可以减少人专家的参与;

  • AIOps 可以降低人力成本;

  • AIOps 在现阶段不等于可以省钱;

AI 的确是一个非常性感的词汇,大家认为只要实现了智能化,就能够轻轻松松,不需要人的干预,这当然是一个非常理想的状况,但是,在短时间内,这个不能实现。这个的实现难度,个人认为,与自动无人驾驶,能实现第五等级是同样的难度,也就说,可能起码需要10年左右的时间,甚至可能更长时间。

AIOps 平台本质上还是一个工具,在构建后,仍然需要人的参与,而且在目前的探索发展的投入阶段,有大量的工需要去做,需要运维专家,大数据工程师,算法科学家,业务专家,暂时看不到能削减人力成本的可能性,而且相关的投入可能需要多年的时间。

在平台建立后,在持续改进的情况下,仍然需要专家或者分析师,从不同的维度,从不同的业务口径,组合合适的可视化技术,机器学习技术,大数据分析技术,制定分析场景,平台才能够为IT运维,业务分析产生持续的洞察,提供商业价值。

所以,AIOps 不能取代人,在现阶段不可能减少人力投入,但在未来可能能促进部分运维人员转型为通晓业务,掌握运维知识的数据分析师。

算法和智能化是AIOps最重要的事情

算法很重要,但是我个人认为,在此阶段,大部分企业不应该以算法为第一着眼点。

这个应该是比较有争议,或者,或者说大家认知不太一致的部分。以下这张图是 Gartnert 在 AIOps 还在叫 ITOA 时候,给定义的四个阶段:

  1. Data ingestion, indexing, storage and access;

  2. Visualization and basic statistical summary;

  3. Pattern discovery and anomaly detection;

  4. True causal path discovery;

Gartner 在报告中强调,掌握后面阶段的前提是拥有前一阶段的能力,如果不拥有充分的前一阶段能力,将会影响 ITOA 的落地效果。因此这四个阶段必须一个步一脚印,第三以及第四部时,才显著地引入了机器算法,或者 AI 的必要。

大家都知道,所谓的机器学习算法,统计算法,深度学习算法这些 AI 的分类,其实是高度依赖于数据的。没有多种数据源,数据的采集,数据存储,数据统计,数据可视化,一切都只是空中楼梯。

来源: Gartner Report “Organizations Must Sequentially Implement the Four Phases of ITOA to Maximize Investment ” 2015.2.18

因此,AIOps 的平台的建设首先应该是着眼点应该是大数据,然后才是算法,从而实现持续洞察和改进的目标。

一定要上深度学习才叫 AIOps

我们可以先看看 AI , Machine Learning , Deep Learning 的关系,他们的关系大概如下图。

学术界有不少学者,在探索部分深度学习算法智能运维中的应用,如犹他州大学的《DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning》 中利用 Long Short-Term Memory (LSTM)来实现日志模式的发现,从而实现异常检测。但是,其实智能运维所需要的大部分算法,决策树学习(decision tree learning)、聚类(clustering)、SVM(Support Vector Machine)和贝叶斯网络(Bayesian networks)等等算法,均是属于传统的机器学习范畴的,因此 我们不应该将深度学习与 AIOps 挂上必然的联系。

甚至于,我们不用拘泥于概念,从解决问题的角度出发,在特定的场景,利用传统的规则集,设定一些规则,降低了运维人员的工作强度,提高了效率,也能叫智能运维。甚至在Gartner 的报告中,对AIOps 落地的第一步,是统计分析,可视化,而不是任何的机器学习算法。

它适合现阶段所有有规模的用户

这个比较好理解,就目前来看,AIOps 只适合大型的客户,原因如下:

  1. 中小型的客户缺乏多种数据源;

  2. 中小型客户业务需求没有那么复杂;

  3. 很多算法,其实是为了大规模运维的时候才用的上的,在规模小的时候,难以产生效果;

运维自动化是智能运维的前提

我看到过不少的文章,将运维分成了四个阶段,将自动化运维放在智能运维的前一个阶段,把智能,又或者在智能运维这个体系里头,硬是塞了很多自动化运维,批量操作,批量规划的功能在里头,我觉得都是不对的。自动化运维更像是手,智能运维更像是眼镜及大脑,有了更全面数据,更充满的分析后,大脑能更好的指挥手进行操作。

因此,企业应该将自动化运维和智能化运维看成了两个有关联的体系,但是不应该混一谈,造成更多的误解。

OneAPM 全新推出新一代 AIOps 平台 I2,欢迎您随时联系我们,即刻开启贵公司的智能运维之旅。点击进入 AIOps 官网了解更多信息。

来源:http://blog.oneapm.com/apm-tech/817.html

AIOps 平台的误解,挑战及建议(中)— AIOps常见的误解的更多相关文章

  1. DOIS 2018 — OneAPM 蓝海讯通以数据为中心的 AIOps 平台亮相

    AIOps 近两年开始在运维圈子里面火了起来.一夜间传统和新兴的运维管理软件供应商,IT 运维系统开发商,大数据厂商,人工智能算法提供商,还有 BAT,大家都在谈论这个话题.在短短的不到 1 年时间中 ...

  2. AIOps 平台的误解,挑战及建议(下)— AIOps 挑战及建议

    本文篇幅较长,分为上,中,下,三个部分进行连载.内容分别为:AIOps 背景/所应具备技术能力分析(上),AIOps 常见的误解(中),挑战及建议(下). 前言 我大概是 5,6 年前开始接触 ITO ...

  3. Hadoop平台常用配置及优化建议

    当发现作业运行效率不理想时,需要对作业执行进行性能监测,以及对作业本身.集群平台进行优化.优化后的集群可能最大化利用硬件资源,从而提高作业的执行效率.本文记录了在hadoop集群平台搭建以及作业运行过 ...

  4. 人们对Python在企业级开发中的10大误解

    From : 人们对Python在企业级开发中的10大误解 在PayPal的编程文化中存在着大量的语言多元化.除了长期流行的C++和Java,越来越多的团队选择JavaScript和Scala,Bra ...

  5. 国内物联网平台初探(八):中移物联网开放平台OneNet

    平台定位 OneNET是中移物联网有限公司搭建的开放.共赢设备云平台,为各种跨平台物联网应用.行业解决方案,提供简便的云端接入.存储.计算和展现,快速打造物联网产品应用,降低开发成本. IoT Paa ...

  6. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  7. [转]基于WorldWind平台的建筑信息模型在GIS中的应用

    1 引言   随着BIM(Building Information Modeling)的不断发展,建筑信息建模的理念贯穿着建筑.结构.施工.运行维护以及拆迁再规划的整个建筑的生命周期,这种理念不仅使得 ...

  8. 如何配置一个路径,能够既适合Linux平台,又适合Windows平台,可以从这个路径中读取文件

    如何配置一个路径,能够既适合Linux平台,又适合Windows平台,可以从这个路径中读取文件? 目的:就是希望在项目的配置文件中配上一样的路径,不管协作者使用的是什么平台,都能够读到文件. 比如:L ...

  9. 21全志r58m平台的framework在使用过程中会莫名的崩溃掉

    21全志r58m平台的framework在使用过程中会莫名的崩溃掉 2018/10/25 16:20 版本:V1.0 开发板:SC5806 1.系统编译: rootroot@cm88:/home/ww ...

随机推荐

  1. Kubernetes 中的核心组件与基本对象概述

    Kubernetes 是 Google 基于 Borg 开源的容器编排调度,用于管理容器集群自动化部署.扩容以及运维的开源平台.作为云原生计算基金会 CNCF(Cloud Native Computi ...

  2. Android--UI之ListView

    前言 今天讲解一下Android平台下ListView控件的开发,在本篇博客中,将介绍ListView的一些常用属性.方法及事件,还会讲解ListView在开发中常用的几种方式,以及使用不通用的适配器 ...

  3. 【Android基础】Fragment 详解之Fragment介绍

    Fragment在Android 3.0( API 11)引入,是为了支持在大屏上显示更加动态.灵活的UI,比如在平板和电视上.Fragment可以看作是嵌套的Activity,类似ActivityG ...

  4. leetcode — search-in-rotated-sorted-array

    /** * Source : https://oj.leetcode.com/problems/search-in-rotated-sorted-array/ * * Created by lverp ...

  5. 【JAVA集合框架一 】java集合框架官方介绍 Collections Framework Overview 集合框架总览 翻译 javase8 集合官方文档中文版

    原文链接: https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html 原文内容也一并附加在本文最 ...

  6. SpringMVC学习(四)———— 数据回显与自定义异常处理器

    一.数据回显技术 Springmvc默认支持对pojo类型的数据回显,默认不支持简单类型的数据回显 1.1.什么是数据回显? 在信息校验时,如果发生校验错误,那么把校验的数据信息,依然停留在当前页面, ...

  7. Python 的名称空间和作用域

    最开始对名称空间的了解是在学习函数的时候,那时候知道了作用域的查找顺序,以及全局名称空间和局部名称空间,产生疑惑的时候为学递归的时候,那时候还没有名称空间这个概念,只知道递归有个最大深度,那时候以后递 ...

  8. SpringBoot系列——EnableScheduling,对定时器的支持

    前言 定时器功能在项目里面往往会用到,比如定时发送邮件.定时释放数据库资源:这里记录一下springboot对定时器的支持的简单实例 cron表达式 开始之前要先介绍一下cron表达式,这里当一下百度 ...

  9. Linux之定时任务Crond使用

    Linux之定时任务Crond使用 一.用法 crond服务是linux系统自带的服务,是不需要手动安装的: crond服务是一种守护进程: Linux中的用户使用contab命令来配置corn任务: ...

  10. 第一册:lesson eighty three.

    原文:Going on holiday. A:Hello Sam, come in. B:Hi,Sam.We are having lunch. Do you want to have lunch w ...