POJ 1330 Nearest Common Ancestors(求最近的公共祖先)
题意:给出一棵树,再给出两个节点a、b,求离它们最近的公共祖先。
方法一:
先用vector存储某节点的子节点,fa数组存储某节点的父节点,最后找出fa[root]=0的根节点root。
之后求每个节点的“高度”,更节点的高度为1,每往下一层高度+1。
读取a和b后,先求出它们位于同一个高度的祖先:
1.若此祖先相同,则即为最近的公共祖先。
2.若不相同,则求各自的父节点,知道两者的父节点相同,即为最近的公共祖先。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector> using namespace std;
const int maxn=;
int n;
vector<int> son[maxn];
int depth[maxn]; //depth[i]表示节点i的“高度”,这里根节点高度为1,每往下一层高度+1
int fa[maxn]; //fa[i]表示i的父节点 void init(){
for(int i=;i<maxn;i++)
son[i].clear();
memset(depth,,sizeof(depth));
memset(fa,,sizeof(fa));
}
//求出每个节点的“高度”
void dealdepth(int u){
for(int i=;i<son[u].size();i++){
int v=son[u][i];
depth[v]=depth[u]+;
dealdepth(v);
}
return;
} int solve(int a,int b){
//depth[a]>depth[b],表示b在a的上方,先求出a的与b在同一层的祖先
if(depth[a]>depth[b]){
while(depth[a]>depth[b])
a=fa[a];
if(a==b)
return a;
}
//depth[a]<depth[b],表示a在b的上方,先求出b的与a在同一层的祖先
else if(depth[a]<depth[b]){
while(depth[a]<depth[b])
b=fa[b];
if(a==b)
return a;
}
//同时求祖先,直至相等
while(a!=b){
a=fa[a];
b=fa[b];
}
return a;
}
int main()
{
int t,a,b,root,u,v; //root:根节点
scanf("%d",&t);
while(t--){
init();
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
son[u].push_back(v);
fa[v]=u;
}
for(int i=;i<=n;i++){
if(fa[i]==){
root=i;
break;
}
}
depth[root]=;
dealdepth(root);
scanf("%d%d",&a,&b);
int ans=solve(a,b);
printf("%d\n",ans);
}
return ;
}
方法二:用Tarjan算法求
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <string>
#include <vector>
/*
Tarjan算法
*/
using namespace std;
const int maxn=;
int n,t,a,b; //a,b是要求公共祖先的两点
bool flag; //flag为true表明LCA已经求出了a,b的公共祖先,那么就不用继续往下求了
int vis[maxn]; //LCA标记哪些节点已被访问过
int indegree[maxn]; //记录每个节点的入度,用来找寻根节点
int head[maxn];
int tot;
int ans; struct Edge{
int to,next;
}edge[maxn]; void add(int u,int v){
edge[tot].next=head[u];
edge[tot].to=v;
head[u]=tot++;
}
//并查集
struct UF{
int fa[maxn];
void init(){
for(int i=;i<=n;i++)
fa[i]=i;
}
int find_root(int x){
if(fa[x]!=x)
fa[x]=find_root(fa[x]);
return fa[x];
}
void Union(int u,int v){
fa[v]=fa[u];
}
}uf; void LCA(int u){
if(flag)
return;
int v;
for(int k=head[u];k!=-;k=edge[k].next){
v=edge[k].to;
LCA(v);
uf.Union(u,v);
}
vis[u]=; //标记节点u
//看看u是否是查询的两个节点中的一个
if(u==a){
if(vis[b]){
ans=uf.fa[uf.find_root(b)];
flag=true;
}
}
else if(u==b){
if(vis[a]){
ans=uf.fa[uf.find_root(a)];
flag=true;
}
}
}
int main()
{
int root,u,v;
cin>>t;
while(t--){
memset(indegree,,sizeof(indegree));
memset(head,-,sizeof(head));
tot=;
cin>>n;
for(int i=;i<n;i++){
cin>>u>>v;
add(u,v);
indegree[v]++;
}
for(int i=;i<=n;i++){
if(!indegree[i]){
root=i;
break;
}
}
cin>>a>>b;
flag=false;
memset(vis,,sizeof(vis));
uf.init();//一开始忘记初始化了额
LCA(root);
cout<<ans<<endl; }
return ;
}
POJ 1330 Nearest Common Ancestors(求最近的公共祖先)的更多相关文章
- poj 1330 Nearest Common Ancestors 求最近祖先节点
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 37386 Accept ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- LCA POJ 1330 Nearest Common Ancestors
POJ 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24209 ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
- POJ 1330 Nearest Common Ancestors 【LCA模板题】
任意门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000 ...
- POJ 1330 Nearest Common Ancestors(Targin求LCA)
传送门 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26612 Ac ...
随机推荐
- tomcat之JNDI数据源配置
一.docbase包含方式部署项目 D:\apache-tomcat-6.0.29\conf\server.xml里面添加如下内容 <Host name="localhost&qu ...
- 济南学习 Day 3 T3 pm
仙人掌(cactus)Time Limit:1000ms Memory Limit:64MB题目描述LYK 在冲刺清华集训(THUSC) !于是它开始研究仙人掌,它想来和你一起分享它最近研究的结果. ...
- c语言 char*类型作为中间变量将许多字符串保存到一个数组的问题
char*是一个字符串指针,如下面的程序value_作为一个中间变量用来在for循环中scanf输入的值的接收者,然后将value_保存到array中,但是一下程序会出现一个问题就是当你跳出这个函数时 ...
- 使用DriverManager获取数据库连接
DriverManager 是驱动的管理类 * 1).可以通过重载的getConnection() 方法获取数据库连接,较为方便 * 2).可以同时管理多个驱动程序,若注册了多个数据库连接,则调用ge ...
- zedboard OPENCV移植
1:系统环境搭建 要准备好交叉编译环境 见http://blog.csdn.net/xiabodan/article/details/22717175 2:下载cmake CMake是一个跨平台的安装 ...
- Mac支付宝插件风波
1.前言 首先我喜欢看一些创业的书,很多书里都会有马云的身影,马云也算是对我有一定的影响,从而我对淘宝也产生了一定的好感.但是关于这次插件事情,我对阿里产生了一些排斥的心里作用.我并不想吐槽淘宝,也不 ...
- MySQL 性能优化
内容简介:这是一篇关于mysql 性能,mysql性能优化,mysql 性能优化的文章.网上有不少mysql 性能优化方案,不过,mysql的优化同sql server相比,更为麻烦与负责,同样的设置 ...
- Scrapy源码学习(一)
用Scrapy已经有一段时间了,觉得该是看一下源码的时候了.最开始用的时候还是0.16的版本,现在稳定版已经到了0.18.结合使用Scrapy的过程,先从Scrapy的命令行看起. 一.准备 下载源代 ...
- Firebird数据库相关备忘录
Firebird数据库中有一些很特别的东西,很好用,但由于平时用的不多,记在这里,以备以后用到时查询. 1.以ADO 的OLE ODBC驱动方式访问 Firebird,可以使用如下连接串: FBCon ...
- Python脚本控制的WebDriver 常用操作 <十七> 获取测试对象的属性及内容
测试用例场景 获取测试对象的内容是前端自动化测试里一定会使用到的技术.比如我们要判断页面上是否显示了一个提示,那么我们就需要找到这个提示对象,然后获取其中的文字,再跟我们的预期进行比较.在webdri ...