Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition that a vector $w$ mush satisfy in order that the bilinear functional $$\bex F(u,v)=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{w,v} \eex$$ is elementary.

Solution.

(1). If $w=ky$ for some $k\in\bbC$, then $$\beex \bea F(u,v)&=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{ky,v}\\ &=\sef{x+kz,u}\sef{y,v}, \eea \eeex$$ and thus $F$ is elementary.

(2). We now show that the condition that $w$ is a multiplier of $y$ is necessary to ensure that $F$ is elementary. It can be proved as follows easily; however, when I have not got it, it really hindered me to go forward this fun journey of the matrix analysis. We choose a basis of $\scrH$: $$\bex u_1,\cdots,u_n \eex$$ where $u_1=x,u_2=y,u_3=z$. And for $u\in \scrH$, we denote by $u_i$ the coordinate of $u$ with respect to this basis. Since $F$ is elementary, there exist $a,b\in \scrH$ such that $$\bex F(u,v)=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{w,v} =\sef{a,u}\sef{b,v}. \eex$$ Taking $u=u_1$ or $u_3$, $v=u_j$ for arbitrary $j$, we obtain $$\bex F(u_1,u_j)=y_j=a_1b_j,\quad F(u_3,u_j)=w_j=a_3b_j. \eex$$ Consequently, if $a_3=0$, then $w=0=0y$; if $a_3\neq 0$s, then $$\bex w_j=a_3b_j=\frac{a_3}{a_1}b_j\ra w=\frac{a_3}{a_1}y. \eex$$ Here $a_1\neq 0$ (otherwise $y=0$).

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 【maven项目结构】module 生成独立的jar

    生成jar 生成jar的过程会出现以下问题: clean完了之后就会出现以下问题: install [INFO] Scanning for projects... [INFO] [INFO] ---- ...

  2. HttpWebRequest

    同步请求=====================================================================================  byte[] da ...

  3. linux 批量重命名文件

    模拟结果文件路径结构大概是:/当前目录/模型名/字模型名模拟/模拟温度/模拟结果文件. 模拟结果文件命名时相同的.模拟结果文件需要修改模拟结果文件的后缀名. 附shell脚本: find -type ...

  4. NodeJS用递归实现异步操作的链式调用,完成一个简易的命令行输入输出REPL交互接口

    REPL —— Read-Eval-Print-Loop. 00.一门好的编程语言的必要条件 REPL并不是什么高大上的东西,简单的说就是一个从命令行程序,读取终端输入,处理,打印结果,如此循环.这是 ...

  5. Ubuntu的挂起和休眠

    Ubuntu的挂起和休眠 之前一直没关注过这方面的信息,因为以前只是在台式机上面用Ubuntu,笔记本一直都是Windows.随着Windows越来越傻冒,最近决定将常用系统转为Ubuntu,才注意到 ...

  6. Flume学习——Flume的架构

    Flume有三个组件:Source.Channel 和 Sink.在源码中对应同名的三个接口. When a Flume source receives an event, it stores it ...

  7. 如果Java 失宠于Oracle,那么未来会怎么样?

    [编者按]对于前不久 Oracle 裁掉了一部分 Java 布道师,近日一位 Oracle 前高管称其为该机构对Java的「计划报废」.如果这个计划是属实的,那么对于寻常的开发者.已经采用了 Java ...

  8. jmeter HTTP信息头管理器使用一例

    最近在测试过程中遇到一个问题,被测系统会检测http header:如果不包含制定内容会引发302跳转操作,从而是测试达不到效果.解决办法,增加http 信息头管理器,直接上图 此处注意: 1.此处“ ...

  9. 【BZOJ 1069】 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Description 在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. Input 第 ...

  10. SaaS系列介绍之九: SaaS营销模式分析

    1 配置模式 中国企业很多是人治,管理弹性非常大,公司的政策经常变化,管理流程.业务变化也非常大,发展也非常快;一个公司今年是10个人,明年是100个人,后年可能是1000人.管理机制.方法处于经常变 ...