Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition that a vector $w$ mush satisfy in order that the bilinear functional $$\bex F(u,v)=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{w,v} \eex$$ is elementary.

Solution.

(1). If $w=ky$ for some $k\in\bbC$, then $$\beex \bea F(u,v)&=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{ky,v}\\ &=\sef{x+kz,u}\sef{y,v}, \eea \eeex$$ and thus $F$ is elementary.

(2). We now show that the condition that $w$ is a multiplier of $y$ is necessary to ensure that $F$ is elementary. It can be proved as follows easily; however, when I have not got it, it really hindered me to go forward this fun journey of the matrix analysis. We choose a basis of $\scrH$: $$\bex u_1,\cdots,u_n \eex$$ where $u_1=x,u_2=y,u_3=z$. And for $u\in \scrH$, we denote by $u_i$ the coordinate of $u$ with respect to this basis. Since $F$ is elementary, there exist $a,b\in \scrH$ such that $$\bex F(u,v)=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{w,v} =\sef{a,u}\sef{b,v}. \eex$$ Taking $u=u_1$ or $u_3$, $v=u_j$ for arbitrary $j$, we obtain $$\bex F(u_1,u_j)=y_j=a_1b_j,\quad F(u_3,u_j)=w_j=a_3b_j. \eex$$ Consequently, if $a_3=0$, then $w=0=0y$; if $a_3\neq 0$s, then $$\bex w_j=a_3b_j=\frac{a_3}{a_1}b_j\ra w=\frac{a_3}{a_1}y. \eex$$ Here $a_1\neq 0$ (otherwise $y=0$).

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 【socket】TCP 和 UDP 在socket编程中的区别

    一.TCP与UDP的区别 基于连接与无连接  对系统资源的要求(TCP较多,UDP少)  UDP程序结构较简单  流模式与数据报模式  TCP保证数据正确性,UDP可能丢包  TCP保证数据顺序,UD ...

  2. 实验五 Java网络编程及安全

    北京电子科技学院 实      验      报      告 课程:移动平台应用开发实践  班级:201592   姓名:曾俊宏  学号:20159210 成绩:___________  指导老师: ...

  3. linux驱动系列之挂载(转)

    转自网页:http://www.cnblogs.com/yeahgis/archive/2012/04/05/2432779.html http://www.linuxso.com/command/c ...

  4. DIV中TABLE居的2种方式

    <html><head><title>测试页面</title></head><body><div width=" ...

  5. [转载]async & await 的前世今生

    async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...

  6. 成功解决Tomcat-JDBC-MySQL乱码

    0.MySQL-JDBC驱动文档 官方解释 1.数据库的字符编码和表内字段的编码 在MySQL中数据库的字符编码和表内字段的编码的要指定为utf8(utf8_general_ci) 2.jsp中 pa ...

  7. POJ-1088 滑雪 (包含部分自用测试数据)

    这题最简单的想法是深搜+记录,由于数据量比较小.这么做可以AC.如果在h大的情况下这种递归方法总会有一些问题. 如果转换一下,这个可以使用递推来解决,先对高度进行由低到高的排序,然后顺序对这些高度计算 ...

  8. linux telnet命令参数及用法详解--telnet连接远程终端命令

    功能说明:远端登入. 语 法:telnet [-8acdEfFKLrx][-b<主机alias.html' target='_blank'>别名>][-e<脱离字符>][ ...

  9. HDU 1885 Key Task(三维BFS)

    题目链接 题意 : 出口不止一个,一共有四种颜色不同的门由大写字母表示,而钥匙则是对应的小写字母,当你走到门前边的位置时,如果你已经走过相应的钥匙的位置这个门就可以走,只要获得一把钥匙就可以开所有同颜 ...

  10. POJ 1942 Paths on a Grid(组合数)

    http://poj.org/problem?id=1942 题意 :在一个n*m的矩形上有n*m个网格,从左下角的网格划到右上角的网格,沿着边画,只能向上或向右走,问有多少条不重复的路 . 思路 : ...