Description

两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即:

现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数。请帮助她解决这个问题
Input

第一行包含3个正整数n,d,k,分别表示向量的个数,维数以及待检测的倍数。
接下来n行每行有d个非负整数,其中第i行的第j个整数表示向量xi的第j维权值xi,j。
Output

包含两个整数,用空格隔开。
如果存在两个向量xp,xq的内积为k的整数倍,则输出两个向量的编号p与q(要求p<q)。如果存在多组这样的向量组合,输出其中任意一组即可。
若不存在这样的向量组合,则输出两个-1。
Sample Input
Sample Output
HINT

话说每次我都把题目复制一遍充字数2333

k=2时

我们把n个向量拼在一起,变成一个n*d的矩阵,设它为A,然后D=A*A’,A’为A的转置矩阵(行列互换),发现D[i,j]就表示向量i和向量j的内积

假设无解的话那么D矩阵除了对角线以外其他都是1,我们把无解的这个矩阵求出来设为C(只要求对角线),然后判断C和D是否相等,相等就无解

于是随机生成一个1*n的矩阵X判断X*A*A’是否等于X*C,假设不等于的话我们就找出不相等的那个位置,假设是第i个不相等,那就肯定存在一个j使得向量i与向量j的内积mod k=0

所以这个就暴力判断一下

k=3时

我们不能确定矩阵C的样子了,因为有三种情况0,1,2

但是我们发现1^2 mod 3=1,2^2 mod 3=1,所以我们让这个矩阵的元素都平方一下,那么矩阵C又变成了除了对角线其他都是1

但是前面又不好算了,其实也很好算,内积的平方拆开就变成了d^2维的向量的内积(空间存不下,直接照着式子算就行了)

其实随机生成矩阵不是很好,为0的话就没有用了,所以我直接用了全都是1的矩阵来跑答案

由于时间实在卡得太紧,我在Wikioi下了数据(可惜Wikioi没有spj)然后当提答题在bzoj上交了233

 const
maxn=;
maxd=;
var
a:array[..maxn,..maxd]of longint;
b,c,x,y:array[..maxn]of longint;
n,d,k:longint; procedure work2;
var
i,j,k,s:longint;
begin
s:=;
for i:= to n do s:=s xor x[i];
for i:= to n do c[i]:=s xor x[i] xor(x[i] and y[i]);
for i:= to n do
for j:= to d do
b[j]:=b[j] xor (x[i] and a[i,j]);
for i:= to d do x[i]:=b[i];
for i:= to d do b[i]:=;
for i:= to d do
for j:= to n do
b[j]:=b[j] xor (x[i] and a[j,i]);
for i:= to n do
if b[i]<>c[i] then
begin
for j:= to n do
if i<>j then
begin
s:=;
for k:= to d do
s:=s xor (a[i,k] and a[j,k]);
if s= then
begin
writeln(i,' ',j);
exit;
end;
end;
end;
writeln('-1 -1');
end; procedure work3;
var
i,j,k,s:longint;
begin
s:=;
for i:= to n do if y[i]> then y[i]:=;
for i:= to n do inc(s,x[i]);
for i:= to n do c[i]:=(s-x[i]+x[i]*y[i])mod ;
for i:= to n do
for j:= to d do
for k:= to d do
inc(b[(j-)*d+k],x[i]*a[i,j]*a[i,k]);
for i:= to d*d do
begin
x[i]:=b[i]mod ;
b[i]:=;
end;
for i:= to d do
for j:= to d do
for k:= to n do
inc(b[k],x[(i-)*d+j]*a[k,i]*a[k,j]);
for i:= to n do b[i]:=b[i]mod ;
for i:= to n do
if b[i]<>c[i] then
begin
for j:= to n do
if i<>j then
begin
s:=;
for k:= to d do
s:=s+a[i,k]*a[j,k];
if s mod = then
begin
writeln(i,' ',j);
exit;
end;
end;
end;
writeln('-1 -1')
end; procedure main;
var
i,j:longint;
begin
read(n,d,k);
for i:= to n do
for j:= to d do
begin
read(a[i,j]);
a[i,j]:=a[i,j]mod k;
end;
for i:= to n do x[i]:=random(k);
for i:= to n do
for j:= to d do
y[i]:=y[i]+a[i,j]*a[i,j];
for i:= to n do y[i]:=y[i]mod k;
if k= then work2
else work3;
end; begin
randomize;
main;
end.

3243: [Noi2013]向量内积 - BZOJ的更多相关文章

  1. bzoj 3243: [Noi2013]向量内积

    Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...

  2. 【fake题解】[NOI2013]向量内积

    [fake题解][NOI2013]向量内积 做法1 大暴力.哪里不会T哪里. 做法2 所有数都%=k不影响结果.(废话 k的取值只有2和3,所以肯定是要分类讨论的.k=2肯定简单些啦. k=2 出现的 ...

  3. [Noi2013]向量内积

    来自FallDream的博客,未经允许,请勿转载,谢谢. 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: $\sum_{i=1 ...

  4. P1224 [NOI2013]向量内积

    传送门 发现这个内积和矩乘有点像,考虑构造一个 $n$ 行 $m$ 列的矩阵 $A$,每一行都是一个题目给定的 $m$ 维向量 设 $B=AA^T$ ,其中 $A^T$ 为 $A$ 的转置矩阵,那么对 ...

  5. luogu P1224 [NOI2013]向量内积

    传送门 挺有意思的一道题 暴力60就是枚举每个向量暴力check,随机选向量就能多骗一些分 然后两个向量内积要模\(k\)为\(0\),那么如果全部不为\(0\)就不合法.先考虑\(k=2\),对于向 ...

  6. BZOJ3243 NOI2013向量内积(随机化)

    考虑奇技淫巧. 首先是k=2.对向量维护一个前缀和,每次将当前向量与前缀和点乘.如果点乘结果不等于i-1&1,说明当前向量至少和之前的某个向量的数量积是2的倍数,暴力找就可以了.当然等于i-1 ...

  7. 【uoj121】 NOI2013—向量内积

    http://uoj.ac/problem/121 (题目链接) 题意 给出${n}$个${d}$维向量,问是否有两个不同的向量的内积是${k}$的倍数. Solution 又卡了一上午常数,我弃了T ...

  8. BZOJ3243/UOJ121 [Noi2013]向量内积

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  9. BZOJ3243 [Noi2013]向量内积 【乱搞】

    题目链接 BZOJ3243 题解 模数只有\(2\)或\(3\),可以大力讨论 如果模数为\(2\),乘积结果只有\(1\)或\(0\) 如果一个向量和前面所有向量乘积都为\(1\),那么其和前面向量 ...

随机推荐

  1. android app性能优化大汇总(内存性能优化)

    转载请注明本文出自大苞米的博客(http://blog.csdn.net/a396901990),谢谢支持! 写在最前: 本文的思路主要借鉴了2014年AnDevCon开发者大会的一个演讲PPT,加上 ...

  2. 【网络收集】获取JavaScript 的时间使用内置的Date函数完成

    var mydate = new Date(); mydate.getYear(); //获取当前年份(2位) mydate.getFullYear(); //获取完整的年份(4位,1970-???? ...

  3. Windows Kernel Way 1:Windows内核调试技术

    掌握Windows内核调试技术是学习与研究Windows内核的基础,调试Windows内核的方式大致分为两种: (1)通过Windbg工具在Windows系统运行之初连接到Windows内核,连接成功 ...

  4. 2015影响因子Excel版

    现在终于有影响因子2015的Excel版了,这个版本除了还包括杂志全称和缩写等基本信息还,包括中科院分区, 应该是迄今2015影响因子最奢华的版本了吧. 看了这个版本,发现中国的SCI杂志还是不少的, ...

  5. 【学习笔记】【C语言】循环结构-do while

    用法: while (条件) {     } do {   } while(条件);   while和do-while的区别 1.很多情况下,while和do while可以互换   2.while特 ...

  6. UI6_UIAlertContrller

    // // ViewController.m // UI6_UIAlertContrller // // Created by zhangxueming on 15/7/7. // Copyright ...

  7. UI1_UIView层操作

    // // ViewController.m // UI1_UIView层操作 // // Created by zhangxueming on 15/7/1. // Copyright (c) 20 ...

  8. 7款超酷HTML5 3D动画精选应用及源码

    对以前来讲,3D动画拿到网页上展示是一件非常奢侈的事情,第一是浏览器不够先进,第二是大部分只能用flash实现伪3D.HTML5的出现,让实现网页3D动画变得非常简单,当然前提是你不要再使用像IE67 ...

  9. 洛谷 P1209 修理牛棚== Codevs 2079 修理牛棚

    时间限制: 1 s   空间限制: 128000 KB   题目等级 : 黄金 Gold 题目描述 Description 在一个夜黑风高,下着暴风雨的夜晚,farmer John的牛棚的屋顶.门被吹 ...

  10. 深度模拟java动态代理实现机制系类之三

    这里的内容就比较复杂了,要实现的是对任意的接口,对任意指定的方法,以及对任意指定的代理类型进行代理,就更真实的模拟出java虚拟机的动态代理机制 罗列一下这里涉及的类.接口之间的关系,方便大家学习.1 ...