P3498 [POI2010]KOR-Beads
hash+hash表+调和级数
关于调和级数(from baidu百科):
在做题之前,我们需要先算算复杂度
我们至少要枚举子串的长度,并取出每个子串。
计算枚举的总复杂度
O(n+n/+n/+n/+...+n/n)(分数向下取整)== O(n*(1+/+/+/+...+/n))(分数向下取整)<= O(n*(1+1/2+1/3+1/4+...+1/n))
其中这个 1+1/2+1/3+1/4+...+1/n 通过一种叫调和级数的神奇方法可以得出
+/+/+/+...+/n ≈ ln n < log n
∴枚举的总复杂度 <= O( n log n )
所以如果比较和记录的复杂度可以达到 O(1),我们就可以轻松愉快地(大雾)过掉了。
于是我们想到用hash瞎搞
我们预处理出主串的hash值,由于子串可以翻转,所以正序逆序都要算
然后取出子串的hash值(方法见代码),扔到hash表里判重
至于怎么搞hash表,用邻接表实现就好了。
但是我们每次枚举都要先清空hash表,时间占用太大了。
于是我们可以引入一个tim数组,存下时间戳,表示枚举长度 i 时这个子串被扔进去
当 tim 不同时,说明这是上次枚举的数据,已经失效,可以直接覆盖
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int read(){
char c=getchar(); int x=;
while(c<''||c>'') c=getchar();
while(''<=c&&c<='') x=x*+c-,c=getchar();
return x;
}
typedef unsigned long long ull;
#define N 200005
const ull bs=1e9+;
const ull Ph=;
int n,ans,pos[N],tp;
int cnt,hd[Ph],nx[N*],ti[N*];
ull a[N],fac[N],h1[N],h2[N],v[N*];
void ins(ull x,int nw){
nx[++cnt]=hd[x%Ph]; hd[x%Ph]=cnt;
ti[cnt]=nw; v[cnt]=x;
}
int ask(ull x,int nw){
for(int i=hd[x%Ph];ti[i]==nw;i=nx[i])
if(v[i]==x) return ;
return ;
}
int main(){
n=read(); fac[]=;
for(int i=;i<=n;++i){
a[i]=read();
fac[i]=fac[i-]*bs;
h1[i]=h1[i-]*bs+a[i];
}
for(int i=n;i>=;--i) h2[i]=h2[i+]*bs+a[i];
for(int k=;k<=n;++k){
if(n/k<ans) break;
int tt=; cnt=;
for(int i=;i+k-<=n;i+=k){
ull p1=h1[i+k-]-h1[i-]*fac[k];
ull p2=h2[i]-h2[i+k]*fac[k];
if(ask(p1,k)&&ask(p2,k))
ins(p1,k),ins(p2,k),++tt;
}
if(tt>ans) ans=tt,pos[tp=]=k;
else if(tt==ans) pos[++tp]=k;
}sort(pos+,pos+tp+);
printf("%d %d\n",ans,tp);
for(int i=;i<=tp;++i) printf("%d ",pos[i]);
return ;
}
P3498 [POI2010]KOR-Beads的更多相关文章
- bzoj 2081 [Poi2010]Beads hash+调和级数
2081: [Poi2010]Beads Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1003 Solved: 334[Submit][Statu ...
- 【BZOJ2081】[Poi2010]Beads hash+调和级数
[BZOJ2081][Poi2010]Beads Description Zxl有一次决定制造一条项链,她以非常便宜的价格买了一长条鲜艳的珊瑚珠子,她现在也有一个机器,能把这条珠子切成很多块(子串), ...
- BZOJ 2081: [Poi2010]Beads
Description 问把n截成每个长度后不同子串个数. Sol 调和极数+Hash. 首先这是一个式子 \(n\sum_{i=1}^n \frac {1}{i}\) . 这东西就是调和极数再乘上 ...
- LOJ#2427. 「POI2010」珍珠项链 Beads
题目地址 题目链接 题解 不会算复杂度真是致命,暴力枚举k每次计算是n/2+n/3+n/4+...+1的,用调和级数算是\(O(nlogn)\)的... 如果写哈希表的话能够\(O(nlogn)\), ...
- BZOJ2081 : [Poi2010]Beads
暴力枚举$k$,对于一个子串,计算它正着的hash值以及反着的hash值,取最小值得到其最终hash值. 对于$k$,一共有$\lfloor\frac{n}{k}\rfloor$个子串,计算出它们的最 ...
- [POI2010]Beads
题目大意: 给定一个长度为$n(n\leq200000)$的串$S_{1\sim n}$,选择一个$l$,从$S_1$开始,将$S$分为连续的若干段,使得每一段长度为$l$.令$k$为分出来不同的子串 ...
- 【bzoj2081】[Poi2010]Beads Hash
题目描述 Zxl有一次决定制造一条项链,她以非常便宜的价格买了一长条鲜艳的珊瑚珠子,她现在也有一个机器,能把这条珠子切成很多块(子串),每块有k(k>0)个珠子,如果这条珠子的长度不是k的倍数, ...
- POI2010题解
POI2010题解 我也不知道我为什么就开始刷POI了 有些题目咕掉了所以不完整(我都不知道POI到底有多少题) [BZOJ2079][Poi2010]Guilds (貌似bz跟洛谷上的不是一个题?) ...
- Beads
Beads 题目描述 Zxl有一次决定制造一条项链,她以非常便宜的价格买了一长条鲜艳的珊瑚珠子,她现在也有一个机器,能把这条珠子切成很多块(子串),每块有k(k>0)个珠子,如果这条珠子的长度不 ...
随机推荐
- Pyplot tutorial,Pyplot官方教程自翻译
matplotlib.pyplot is a collection of command style functions that make matplotlib work like MATLAB ...
- CSU 1804 - 有向无环图 - [(类似于)树形DP]
题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 ...
- Oracle SQL之 序列使用限制
Restrictions on Sequence Values You cannot use CURRVAL and NEXTVAL in thefollowing constructs:■ A su ...
- date 命令之日期和秒数转换
时间转为秒数 date -d "2012-11-12 13:00:00" +"%s" 描述转为日期 date -d@1352692800 +"%Y-% ...
- grunt学习三-bower(一)
bower是什么?官网给出的 a package manager fow the web.简单说引入文件版本管理,例如jquery,传统做法到jquery的官网下载下,在引入,这样比较繁琐,也不利用 ...
- 【Loadrunner】Error -26601: Decompression function 错误解决、27728报错解决方案
一. Error -26601: Decompression function 错误解决 Action2.c(30): Error -26601: Decompression function ...
- 在windows中:双击运行Python程序、后台运行Python程序
在windows中:双击运行Python程序.后台运行Python程序 安装Python解释器的windows环境,如果双击运行*.py的文件,会闪退.怎样避免闪退呢? 我们用python的日志输出程 ...
- .NET数据挖掘与机器学习开源框架
1. 数据挖掘与机器学习开源框架 1.1 框架概述 1.1.1 AForge.NET AForge.NET是一个专门为开发者和研究者基于C#框架设计的,他包括计算机视觉与人工智能,图像处理,神经 ...
- 009-java中常用的单个键值对
1.Java 6提供AbstractMap.SimpleEntry<K,V>和AbstractMap.SimpleImmutableEntry<K,V> Map.Entry&l ...
- 007-jdk1.6版本新特性
一.JDK1.6 名称:Mustang(野马) 发布日期:2006-04 新特性: 1.1.AWT新增加了两个类:Desktop和SystemTray[忽略] 前者可以用来打开系统默认浏览器浏览指定的 ...