1. 前言

在机器学习的分类问题领域中,有两个平分秋色的算法,就是逻辑回归支持向量机,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结。

2. LR和SVM的联系

  1. 都是监督的分类算法。
  2. 都是线性分类方法 (不考虑核函数时)。
  3. 都是判别模型

3. LR和SVM的不同

  1. 损失函数的不同,LR是对数损失函数,SVM是hinge损失函数
  2. SVM不能产生概率,LR可以产生概率。
  3. SVM自带结构风险最小化,LR则是经验风险最小化
  4. SVM会用核函数而LR一般不用核函数
  5. LR和SVM在实际应用的区别:根据经验来看,对于小规模数据集,SVM的效果要好于LR,但是大数据中,SVM的计算复杂度受到限制,而LR因为训练简单,可以在线训练,所以经常会被大量采用。

4. 概念解释

  • 判别模型:是直接生成一个表示或者的判别函数(或预测模型),SVM和LR,KNN,决策树都是判别模型。
  • 生成模型:是先计算联合概率分布然后通过贝叶斯公式转化为条件概率,朴素贝叶斯,隐马尔可夫模型是生成模型。
  • 经验风险:对所有训练样本都求一次损失函数,再累加求平均。即,模型\(f(x)\)对训练样本中所有样本的预测能力。
  • 期望风险:对所有样本(包含未知样本和已知的训练样本)的预测能力,是全局概念。(经验风险则是局部概念,仅仅表示决策函数对训练数据集里的样本的预测能力。)
  • 结构风险:对经验风险和期望风险的折中,在经验风险函数后面加一个正则化项(惩罚项),是一个大于0的系数\(\lambda\)。\(J(f)\)表示的是模型的复杂度。

逻辑回归(LR)和支持向量机(SVM)的区别和联系的更多相关文章

  1. 线性模型之逻辑回归(LR)(原理、公式推导、模型对比、常见面试点)

    参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3) ...

  2. 逻辑回归LR

    逻辑回归算法相信很多人都很熟悉,也算是我比较熟悉的算法之一了,毕业论文当时的项目就是用的这个算法.这个算法可能不想随机森林.SVM.神经网络.GBDT等分类算法那么复杂那么高深的样子,可是绝对不能小看 ...

  3. 机器学习(四)—逻辑回归LR

    逻辑回归常见问题:https://www.cnblogs.com/ModifyRong/p/7739955.html 推导在笔记上,现在摘取部分要点如下: (0) LR回归是在线性回归模型的基础上,使 ...

  4. 机器学习-逻辑回归与SVM的联系与区别

    (搬运工) 逻辑回归(LR)与SVM的联系与区别 LR 和 SVM 都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题,如LR的Softmax回归用在深度学习的多分类 ...

  5. 感知器、逻辑回归和SVM的求解

    这篇文章将介绍感知器.逻辑回归的求解和SVM的部分求解,包含部分的证明.本文章涉及的一些基础知识,已经在<梯度下降.牛顿法和拉格朗日对偶性>中指出,而这里要解决的问题,来自<从感知器 ...

  6. 逻辑回归 vs 决策树 vs 支持向量机(II)

    原文地址: Logistic Regression vs Decision Trees vs SVM: Part II 在这篇文章,我们将讨论如何在逻辑回归.决策树和SVM之间做出最佳选择.其实 第一 ...

  7. 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...

  8. 机器学习(九)—逻辑回归与SVM区别

    逻辑回归详细推导:http://lib.csdn.net/article/machinelearning/35119 面试常见问题:https://www.cnblogs.com/ModifyRong ...

  9. [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...

随机推荐

  1. k8s源码分析之kubelet

    一.概述 二.Kubelet对象创建过程:(pkg/kubelet/kubelet.go ) NewMainKubelet 正如名字所示,主要的工作就是创建 Kubelet 这个对象,它包含了 kub ...

  2. 必须掌握的30种SQL语句优化

    1.’对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用 ...

  3. Git管理工具对比(GitBash、EGit、SourceTree)(转载)

    Git管理工具对比(GitBash.EGit.SourceTree) GitBash是采用命令行的方式对版本进行管理,功能最为灵活强大,但是由于需要手动输入希望修改的文件名,所以相对繁琐. EGit是 ...

  4. mysql中查询一个字段属于哪一个数据库中的哪一个表的方式

    mysql中查询一个字段具体是属于哪一个数据库的那一张表:用这条语句就能查询出来,其中 table_schema 是所在库, table_name 是所在表 --mysql中查询某一个字段名属于哪一个 ...

  5. JS charCodeAt在PHP中的等价物(完整的unicode和表情符号兼容性)

    我在JS中有一个简单的代码,如果涉及特殊字符,我无法在PHP中复制. 这是JS代码(请参阅JSFiddle输出): var str = "t

  6. Hadoop JobTracker和NameNode运行时参数查看

      1)JobTracker运行时参数: hadoop@ubuntu:/home/zhangchao3$ ps -ef | grep job hadoop 29563 1 0 11:34 pts/12 ...

  7. grub配置指南

    GRUB(统一引导装入器)是基本的Linux引导装入器.其有四个作用,如下:1.选择操作系统(如果计算机上安装了多个操作系统).2.表示相应引导文件所在的分区.3.找到内核.4.运行初始内存盘,设置内 ...

  8. gcp上使用gpu来学习tensorflow

    1080ti显卡实在是太贵了,8k一张的价格,让我感到无耐.还好,有gcp的gpu来训练,最有意思的是,他还提供300美元,让你挥霍. 1.当然是申请gcp的账号. 2.登录后,左侧->&quo ...

  9. ios7新特性--1

    1.用户界面的扁平化 2.UIKit 动态行为支持 应用程序可以设置UIView 对象和其他对象(遵从UIDynamicItem 协议)的动态行为属性.遵从UIDynamicItem协议的对象被称为d ...

  10. IOS解惑(1)之@property(nonatomic,getter=isOn) BOOL on;中的getter解惑

    1 问题: @property(nonatomic,getter=isOn) BOOL on; 中的getter = isOn的含义? 2 答案: 如果这个property是 BOOL on, 那么O ...