滑雪

Time Limit: 1000MS Memory Limit: 65536K

Total Submissions: 86318 Accepted: 32289

Description

Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长底滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子

1 2 3 4 5

16 17 18 19 6

15 24 25 20 7

14 23 22 21 8

13 12 11 10 9

一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-…-3-2-1更长。事实上,这是最长的一条。

Input

输入的第一行表示区域的行数R和列数C(1 <= R,C <= 100)。下面是R行,每行有C个整数,代表高度h,0<=h<=10000。

Output

输出最长区域的长度。

Sample Input

5 5

1 2 3 4 5

16 17 18 19 6

15 24 25 20 7

14 23 22 21 8

13 12 11 10 9

Sample Output

25

动态规划的题目

状态转移方程:dp[x][y]=max{四个方向的值}

其实这道题目又牵扯到了记忆化搜索和动态规划的联系。我初学动态规划,注意到了这类题目,大言不惭的进行总结:

if(dp[x][y])

return dp[x][y];

这个语句,是DFS函数里的非常重要的,也是记忆化搜索的源泉。http://blog.csdn.net/dacc123/article/details/50317371

这个博客里,我觉得和这个题目是有联系的,同样都是深度优先搜索的形式,完成了动态规划。区别是这个是在一个集合面找最大值,而另一个直接继承了。以后要继续关注,并进行总结。

#include <iostream>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <stdlib.h> using namespace std;
int n,m;
int a[105][105];
int dp[105][105];//代表从这个点出发可以达到的最远距离
int dir[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
bool tag;
int maxin;
int DFS(int x,int y)
{
if(dp[x][y])
return dp[x][y];
int res=0;
for(int i=0;i<4;i++)
{
int xx=x+dir[i][0];
int yy=y+dir[i][1];
if(xx<0||xx>n-1||yy<0||yy>m-1)
continue;
if(a[xx][yy]<a[x][y])
res=max(res,DFS(xx,yy));
}
dp[x][y]=res+1;
return dp[x][y]; }
int main()
{
int ans;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(dp,0,sizeof(dp));
ans=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
scanf("%d",&a[i][j]);
} for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{ if(ans<DFS(i,j))
ans=DFS(i,j); }
}
printf("%d\n",ans); }
return 0;
}

POJ-1088 滑雪 (记忆化搜索,dp)的更多相关文章

  1. POJ 1088 滑雪(记忆化搜索+dp)

    POJ 1088 滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 107319   Accepted: 40893 De ...

  2. POJ 1088 滑雪 (记忆化搜索)

    题目链接:http://poj.org/problem?id=1088 题意很好懂,就是让你求一个最长下降路线的长度. dp[i][j]记录的是i j这个位置的最优的长度,然后转移方程是dp[i][j ...

  3. POJ 1088 滑雪 记忆化DP

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K       Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度 ...

  4. POJ 1088 滑雪 记忆化优化题解

    本题有人写是DP,只是和DP还是有点区别的,应该主要是记忆化 Momoization 算法. 思路就是递归,然后在递归的过程把计算的结果记录起来,以便后面使用. 非常经典的搜索题目,这样的方法非常多题 ...

  5. POJ 1390 Blocks(记忆化搜索+dp)

    POJ 1390 Blocks 砌块 时限:5000 MS   内存限制:65536K 提交材料共计: 6204   接受: 2563 描述 你们中的一些人可能玩过一个叫做“积木”的游戏.一行有n个块 ...

  6. 记忆化搜索(DP+DFS) URAL 1183 Brackets Sequence

    题目传送门 /* 记忆化搜索(DP+DFS):dp[i][j] 表示第i到第j个字符,最少要加多少个括号 dp[x][x] = 1 一定要加一个括号:dp[x][y] = 0, x > y; 当 ...

  7. tyvj 1004 滑雪 记忆化搜索

    滑雪 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.tyvj.cn/p/1004 Description     trs喜欢滑雪.他来 ...

  8. HDU 1078 FatMouse and Cheese 记忆化搜索DP

    直接爆搜肯定超时,除非你加了某种凡人不能想出来的剪枝...555 因为老鼠的路径上的点满足是递增的,所以满足一定的拓补关系,可以利用动态规划求解 但是复杂的拓补关系无法简单的用循环实现,所以直接采取记 ...

  9. 记忆化搜索 dp学习~2

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1331 Function Run Fun Time Limit: 2000/1000 MS (Java/ ...

  10. 【10.31校内测试】【组合数学】【记忆化搜索/DP】【多起点多终点二进制拆位Spfa】

    Solution 注意取模!!! Code #include<bits/stdc++.h> #define mod 1000000007 #define LL long long usin ...

随机推荐

  1. python 上下文处理错误,记录日志

    之前发过了装饰器版本的异常记录日志,但是需要装饰在函数或方法上.此篇用上下文管理,用一个with就能记录错误了,不需要写成函数. import traceback # pip install mult ...

  2. Eclipse------导入项目后出现Java compiler level does not match the version of the installed Java project facet

    报错信息:Java compiler level does not match the version of the installed Java project facet 解决方法: 1.点击工具 ...

  3. ios开发之--MJRefresh上拉加载的时候,tableview会向上偏移

    1,出现这种情况的原因: 这个应该是UITableView最大的改变.我们知道在iOS8引入Self-Sizing之后,我们可以通过实现estimatedRowHeight相关的属性来展示动态的内容, ...

  4. firefox 好用的插件

    firefox一直是各位渗透测试必备的利器,这里整理了34款Firefox插件和几款Chrome的插件,其中包含渗透测试.信息收集.代理.加密解密等功能. Firefox插件 1:Firebug Fi ...

  5. 在 Linux 使用 GCC 编译C语言共享库

    对任何程序员来说库都是必不可少的.所谓的库是指已经编译好的供你使用的代码.它们常常提供一些通用功能,例如链表和二叉树可以用来保存任何数据,或者是一个特定的功能例如一个数据库服务器的接口,就像MySQL ...

  6. C语言中如何计算时间差

    #include <time.h>   #include <stdio.h>   int main()   {       time_t start ,end ;        ...

  7. lua元表(metatable)和元方法(metamethod)

    (一) 元表概念: 引言:Lua中的每个值都有一套预定义的操作集合,如数字相加等.但无法将两个table相加,此时可通过元表修改一个值的行为,使其在面对一个非预定义的操作时执行一个指定操作. 访问机制 ...

  8. 使用react进行父子组件传值

    在单页面里面,父子组件传值是比较常见的,之前一直用vue开发,今天研究了一下react的父子组件传值,和vue差不多的思路,父组件向子组件传值,父通过初始state,子组件通过this.props进行 ...

  9. mysql学习笔记(三)

    -- 主键冲突(duplicate key) ,'xujian','anhui'); ,'xiewei','anhui'); ,'luyang','anhui');-- 主键冲突了 -- 可以选择性的 ...

  10. django restframwork 教程之authentication权限

    当前我们的API在编辑或者删除的时候没有任何限制,我们不希望有些人有高级的行为,确保: 代码段始终与创建者相关联 只允许授权的用户可以创建代码段 只允许代码段创建者可以更新和删除 没有认证的请求应该有 ...