Nearest Common Ancestors

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3
题意:n组数据,y-1条边,最后一个求lca;
博客:http://blog.csdn.net/barry283049/article/details/45842247;我的代码思路根据最后的在线算法得出;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define inf 999999999
//#pragma comment(linker, "/STACK:102400000,102400000")
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
struct is
{
int u,v;
int next;
}edge[];
int head[];
int deep[];
int rudu[];
int first[];
int dfn[];//存深搜的数组
int dp[][];
int point,jiedge;
int minn(int x,int y)
{
return deep[x]<=deep[y]?x:y;
}
void update(int u,int v)
{
jiedge++;
edge[jiedge].u=u;
edge[jiedge].v=v;
edge[jiedge].next=head[u];
head[u]=jiedge;
}
void dfs(int u,int step)
{
dfn[++point]=u;
deep[point]=step;
if(!first[u])
first[u]=point;
for(int i=head[u];i;i=edge[i].next)
{
int v=edge[i].v;
dfs(v,step+);
dfn[++point]=u;
deep[point]=step;
}
}
void st(int len)
{
for(int i=;i<=len;i++)
dp[i][]=i;
for(int j=;(<<j)<=len;j++)
for(int i=;i+(<<j)-<=len;i++)
{
dp[i][j]=minn(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
int query(int l,int r)
{
int lll=first[l];
int rr=first[r];
if(lll>rr) swap(lll,rr);
int x=(int)(log((double)(rr-lll+))/log(2.0));
return dfn[minn(dp[lll][x],dp[rr-(<<x)+][x])];
}
int main()
{
int x,y,z,i,t;
scanf("%d",&x);
while(x--)
{
memset(head,,sizeof(head));
memset(rudu,,sizeof(rudu));
memset(first,,sizeof(first));
point=;
jiedge=;
scanf("%d",&y);
for(i=;i<y;i++)
{
int u,v;
scanf("%d%d",&u,&v);
update(u,v);
rudu[v]++;
}
for(i=;i<=y;i++)
if(!rudu[i])
{
dfs(i,);
break;
}
st(point);
int u,v;
scanf("%d%d",&u,&v);
printf("%d\n",query(u,v));
}
return ;
}

poj 1330 Nearest Common Ancestors lca 在线rmq的更多相关文章

  1. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  2. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  3. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  4. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  5. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  6. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  7. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  8. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  9. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

随机推荐

  1. PAT Counting Leaves[一般]

    1004 Counting Leaves (30)(30 分) A family hierarchy is usually presented by a pedigree tree. Your job ...

  2. 关闭Oracle 11g的DPR特性

    关闭Oracle 11g的DPR(Direct Path Read)特性 查看event参数值: SQL> show parameter event NAME TYPE VALUE ------ ...

  3. 软件包管理:rpm命令管理-安装升级与卸载

    严格区分大小写 卸载命令不许再包的目录下执行.

  4. liferay中数据库表的解析未完

    页面布局 1:表layout 主要的字段有: 字段 privateLayout 0表示的是公开的页面 字段 layoutId 如果在同一个社区中有很多的界面,layoutId表示各个界面,按照顺序排列 ...

  5. yii2 restful api——app接口编程实例

    <?php namespace common\components; use common\models\Cart; use common\models\User; use Yii; use y ...

  6. MySQL从删库到跑路_高级(四)——存储过程

    作者:天山老妖S 链接:http://blog.51cto.com/9291927 一.存储过程简介 1.存储过程简介 存储过程是一组具有特定功能的SQl语句集组成的可编程的函数,经编译创建并保存在数 ...

  7. php判断数组元素是否存在某个字符串的方法

    php判断数组元素是否存在某个字符串的方法: 方法一:采用in_array(value,array,type) type 可选.如果设置该参数为 true,则检查搜索的数据与数组的值的类型是否相同. ...

  8. C/C++之类型强制转化

    强制转化四种类型可能很多人都常常忽略就象我一样,但是有时还是比较有用的.不了解的建议看看,一些机制我也不是十分了解,只是将一些用法写出来让大家看看.                           ...

  9. 删除github上个人的repositories的操作步骤

  10. Python Web学习笔记之IGMP和ICMP的差别

    理论技术:TCP/IP协议族(四)ICMP和IGMP协议! 应该先说IP协议的,后来考虑到层次性,还是先把支撑协议介绍完在细说IP!因为IP是我的最爱也是我的痛!呵呵! 一.ICMP协议 为什么要使用 ...