Nearest Common Ancestors

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3
题意:n组数据,y-1条边,最后一个求lca;
博客:http://blog.csdn.net/barry283049/article/details/45842247;我的代码思路根据最后的在线算法得出;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define inf 999999999
//#pragma comment(linker, "/STACK:102400000,102400000")
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
struct is
{
int u,v;
int next;
}edge[];
int head[];
int deep[];
int rudu[];
int first[];
int dfn[];//存深搜的数组
int dp[][];
int point,jiedge;
int minn(int x,int y)
{
return deep[x]<=deep[y]?x:y;
}
void update(int u,int v)
{
jiedge++;
edge[jiedge].u=u;
edge[jiedge].v=v;
edge[jiedge].next=head[u];
head[u]=jiedge;
}
void dfs(int u,int step)
{
dfn[++point]=u;
deep[point]=step;
if(!first[u])
first[u]=point;
for(int i=head[u];i;i=edge[i].next)
{
int v=edge[i].v;
dfs(v,step+);
dfn[++point]=u;
deep[point]=step;
}
}
void st(int len)
{
for(int i=;i<=len;i++)
dp[i][]=i;
for(int j=;(<<j)<=len;j++)
for(int i=;i+(<<j)-<=len;i++)
{
dp[i][j]=minn(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
int query(int l,int r)
{
int lll=first[l];
int rr=first[r];
if(lll>rr) swap(lll,rr);
int x=(int)(log((double)(rr-lll+))/log(2.0));
return dfn[minn(dp[lll][x],dp[rr-(<<x)+][x])];
}
int main()
{
int x,y,z,i,t;
scanf("%d",&x);
while(x--)
{
memset(head,,sizeof(head));
memset(rudu,,sizeof(rudu));
memset(first,,sizeof(first));
point=;
jiedge=;
scanf("%d",&y);
for(i=;i<y;i++)
{
int u,v;
scanf("%d%d",&u,&v);
update(u,v);
rudu[v]++;
}
for(i=;i<=y;i++)
if(!rudu[i])
{
dfs(i,);
break;
}
st(point);
int u,v;
scanf("%d%d",&u,&v);
printf("%d\n",query(u,v));
}
return ;
}

poj 1330 Nearest Common Ancestors lca 在线rmq的更多相关文章

  1. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  2. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  3. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  4. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  5. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  6. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  7. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  8. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  9. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

随机推荐

  1. KMP(http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2772)

    #include <stdio.h>#include <string.h>#include <stdlib.h>char a[1000001],b[1000001] ...

  2. find the safest road(弗洛伊德)

    http://acm.hdu.edu.cn/showproblem.php?pid=1596 #include <iostream> #include <stdio.h> #i ...

  3. JS 转整型

    1.丢弃小数部分,保留整数部分 js:parseInt(7/2) 2.向上取整,有小数就整数部分加1 js: Math.ceil(7/2) 3,四舍五入. js: Math.round(7/2) 4, ...

  4. Summary: Arrays vs. Collections && The differences between Collection Interface and Collections Class

    转自http://www.anylogic.com/anylogic/help/index.jsp?topic=/com.xj.anylogic.help/html/code/Arrays_Colle ...

  5. uva12206 后缀数组

    这题说的是给了一串字符 我们要将这个字符 中找出至少出现m次的最长字符串 一个字符课多次使用 利用后缀数组计算最长的lcp 这里有一个点 记得将后缀数组中加入一个空串 如果遇到全部相同的字符时 没办法 ...

  6. mvn deploy 推送到私有仓库,注意当前日期

    由于更改了本机系统时间到过去的一个时间,导致mvn deploy推送到私有仓库后,该更新的jar包时间戳比较旧,客户端不能更新得到新的jar包.

  7. Python: os.listdir()

    os.listdir(): 返回一个列表,此列表包含参数路径下的的文件名或文件夹名.这个列表以字母为顺序. eg: >>>import os >>>dirs=os. ...

  8. linux常用命令:ss 命令

    ss是Socket Statistics的缩写.顾名思义,ss命令可以用来获取socket统计信息,它可以显示和netstat类似的内容.但ss的优势在于它能够显示更多更详细的有关TCP和连接状态的信 ...

  9. linux环境下安装tomcat6

    1)下载apache-tomcat-6.0.10.tar.gz 2)#tar -zxvf apache-tomcat-6.0.10.tar.gz ://解压 3)#cp -R apache-tomca ...

  10. HCNP学习笔记之子网掩码的计算和划分详细

    0x00 子网掩码的计算 TCP/IP网间网技术产生于大型主流机环境中,它能发展到今天的规模是当初的设计者们始料未及的.网间网规模的迅速扩展对IP地址模式的威胁并不是它不能保证主机地址的唯一性,而是会 ...