CodeForces - 1073E :Segment Sum (数位DP)
You are given two integers l l and r r (l≤r l≤r ). Your task is to calculate the sum of numbers from l l to r r (including l l and r r ) such that each number contains at most k k different digits, and print this sum modulo 998244353 998244353 .
For example, if k=1 k=1 then you have to calculate all numbers from l l to r r such that each number is formed using only one digit. For l=10,r=50 l=10,r=50 the answer is 11+22+33+44=110 11+22+33+44=110 .
Input
The only line of the input contains three integers l l , r r and k k (1≤l≤r<10 18 ,1≤k≤10 1≤l≤r<1018,1≤k≤10 ) — the borders of the segment and the maximum number of different digits.
Output
Print one integer — the sum of numbers from l l to r r such that each number contains at most k k different digits, modulo 998244353 998244353 .
Examples
10 50 2
1230
1 2345 10
2750685
101 154 2
2189
题意:求区间[L,R]的满足digit种类不超过K的数字之和。
思路:与常规我数位DP不一样的是,这里求是不是个数,而是这些书之和。所以我们要记录一个二元组(x,y)分别表示(子树之和,子树叶子个数)。
(数位DP其实就是一棵树,子树相同的时候可以直接调用答案)
那么当前节点为根的树的信息=(所有子树的和+当前位*叶子个数,所有叶子个数之和)。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
#define pii pair<int,int>
#define mp make_pair
using namespace std;
const int Mod=;
pii dp[][<<],O=mp(,);
int v[],num[<<],K,q[],tot;
pii dfs(int pos,int st,int lim)
{
if(!lim&&dp[pos][st]!=O) return dp[pos][st];
if(pos==) return mp(,);
int up=; pii res=O,tmp; if(lim) up=q[pos-];
rep(i,,up){
if(num[st|(<<i)]<=K){
tmp=dfs(pos-,st|(<<i),lim&&i==up);
(res.second+=tmp.second)%=Mod;
(res.first+=tmp.first)%=Mod;
(res.first+=(ll)v[pos-]*i%Mod*tmp.second%Mod)%=Mod;
}
}
return dp[pos][st]=res;
}
int cal(ll x)
{
if(x==) return ;
tot=; int ans=;
while(x) q[++tot]=x%,x/=;
memset(dp,,sizeof(dp));
rep(i,,tot){
ll up=; if(i==tot) up=q[tot];
rep(j,,up){
pii tmp=dfs(i,<<j,(i==tot)&&(j==q[tot]));
(ans+=(ll)v[i]*j%Mod*tmp.second%Mod)%=Mod;
(ans+=tmp.first)%=Mod;
}
}
return ans;
}
int main()
{
rep(i,,<<) num[i]=num[i>>]+(i&);
v[]=; rep(i,,) v[i]=(ll)v[i-]*%Mod;
ll L,R; scanf("%lld%lld%d",&L,&R,&K);
printf("%d\n",((cal(R)-cal(L-))%Mod+Mod)%Mod);
return ;
}
CodeForces - 1073E :Segment Sum (数位DP)的更多相关文章
- Educational Codeforces Round 53 E. Segment Sum(数位DP)
Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...
- codeforces 55D - Beautiful numbers(数位DP+离散化)
D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
- Codeforces Gym 100231L Intervals 数位DP
Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description Start with an integer, N0, ...
- Codeforces #55D-Beautiful numbers (数位dp)
D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
- Codeforces - 55D Beautiful numbers (数位dp+数论)
题意:求[L,R](1<=L<=R<=9e18)区间中所有能被自己数位上的非零数整除的数的个数 分析:丛数据量可以分析出是用数位dp求解,区间个数可以转化为sum(R)-sum(L- ...
- CodeForces - 55D - Beautiful numbers(数位DP,离散化)
链接: https://vjudge.net/problem/CodeForces-55D 题意: Volodya is an odd boy and his taste is strange as ...
- codeforce 1073E. Segment Sum
看到这个就是数位DP了,然而细节极多,对于i=1状态直接判了,还有最后一位直接算了 设f[i][zt][0/1]表示枚举到第i位,用了那些数字,是否有前导0(前导0不计入数字,否则就不知道后面有没有0 ...
- FZU2179/Codeforces 55D beautiful number 数位DP
题目大意: 求 1(m)到n直接有多少个数字x满足 x可以整出这个数字的每一位上的数字 思路: 整除每一位.只需要整除每一位的lcm即可 但是数字太大,dp状态怎么表示呢 发现 1~9的LCM 是2 ...
- CodeForces 628D Magic Numbers (数位dp)
题意:找到[a, b]符合下列要求的数的个数. 1.该数字能被m整除 2.该数字奇数位全不为d,偶数位全为d 分析: 1.dp[当前的位数][截止到当前位所形成的数对m取余的结果][当前数位上的数字是 ...
- zoj 3962 Seven Segment Display 数位dp
非常好的一个题,可以比赛时想到的状态太奇葩,不方便转移,就一直没能AC. 思路:dp(i, j)表示已经考虑了前i位,前i位的和为j的贡献.如果当前的选择一直是最大的选择,那么就必须从0~下一位的最大 ...
随机推荐
- 【转】DrawDibDraw
http://blog.csdn.net/normallife/article/details/53177315 BMP位图文件结构及平滑缩放 用普通方法显示BMP位图,占内存大,速度慢,在图形缩小时 ...
- jq expando && $.data()
1.使用隐藏控件或者是js全局变量来临时存储数据,全局变量容易导致命名污染,隐藏控件导致经常读写dom浪费性能 jQuery提供了自己的数据缓存方案,使用jQuery数据缓存方案,我们需要掌握$.da ...
- Spring AMQP 源码分析 05 - 异常处理
### 准备 ## 目标 了解 Spring AMQP Message Listener 如何处理异常 ## 前置知识 <Spring AMQP 源码分析 04 - MessageListene ...
- angular5 路由变化监听
1.路由监听 //监听路由变化this.router.events .filter(event => event instanceof NavigationEnd) .map(() => ...
- Android之MVP模式实现登录和网络数据加载
MVP简介 相信大家对 MVC 都是比较熟悉了:M-Model-模型.V-View-视图.C-Controller-控制器,MVP作为MVC的演化版本,也是作为用户界面(用户层)的实现模式,那么类似的 ...
- The Monster CodeForces - 917A (括号匹配)
链接 大意:给定字符串, 只含'(',')','?', 其中'?'可以替换为'('或')', 求有多少个子串可以的括号可以匹配 (不同子串之间独立) 记$s_($为'('个数, $s_)$为')'个数 ...
- MySQL缓存机制
对MySql查询缓存及SQL Server过程缓存的理解及总结 一.MySql的Query Cache 1.Query Cache MySQL Query Cache是用来缓存我们所执行的SELE ...
- python-day6---运算符
#了解部分#字符串+,*#列表:+,*# l1=[1,2,3]# l2=[4,5]## print(l1+l2)# print(l1*3) #比较运算符# num1=3# num2=1 # print ...
- csp 通信网络
http://blog.csdn.net/zyy_1998/article/details/78334496 试题编号: 201709-4 试题名称: 通信网络 时间限制: 1.0s 内存限制: 25 ...
- HDOJ1001
#include<iostream> using namespace std; int main() { long long n; while(cin >> n) { cout ...