POJ 3685 Matrix 二分 函数单调性 难度:2
Memory Limit: 65536K | ||
Total Submissions: 4637 | Accepted: 1180 |
Description
Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that equals i2 + 100000 × i + j2 - 100000 × j + i × j, you are to find the M-th smallest element in the matrix.
Input
The first line of input is the number of test case.
For each test case there is only one line contains two integers, N(1 ≤ N ≤ 50,000) and M(1 ≤ M ≤ N × N). There is a blank line before each test case.
Output
For each test case output the answer on a single line.
Sample Input
12 1 1 2 1 2 2 2 3 2 4 3 1 3 2 3 8 3 9 5 1 5 25 5 10
Sample Output
3
-99993
3
12
100007
-199987
-99993
100019
200013
-399969
400031
-99939 思路:
1 可以看出当j确定的时候i是单调递增的,那么就可以二分得到某个值当j确定时有多少i的值大于它,设为big
2 二分答案当big+ind>n*n(也即全部个数)时,这个值就太小了,增加下界,反之减少上界即可
错误原因 1:全部个数忘了n*n,打成n了 2:上下界错误,看成了1e4 3:读取爆longlong
#include <cstdio>
using namespace std; long long ind,n;
long long equ(long long i,long long j){
return i*i+j*j+i*j+(i-j)*100000;
}
long long judge(long long mid){
long long big=0;
for(int j=1;j<=n;j++){
int l=0;
int r=n+1;
long long cp;
while(r-l>1){
int m=(r+l)>>1;
cp=equ(m,j);
if(cp==mid){
l=m;
break;
}
else if(cp<mid){
l=m;
}
else{
r=m;
}
}
// printf("binary %I64d col %d %I64d\n",mid,j,l);
big+=n-l;
}
return big;
}
void printe(){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
printf("%6I64d ",equ(i,j));
}
puts("");
}
}
int main(){
int T;
// freopen("C:\\Users\\Administrator\\Desktop\\input.txt","r",stdin);
scanf("%d",&T);
while(T--){
scanf("%I64d%I64d",&n,&ind);
long long l=-(3*n*n+n*300000),r=-l;
//printe();
while(r-l>1){
long long mid=l+r>>1;
long long big=judge(mid);
if(big>n*n-ind){
l=mid;
}
else {
r=mid;
}
}
printf("%I64d\n",r);
}
return 0;
}
POJ 3685 Matrix 二分 函数单调性 难度:2的更多相关文章
- POJ 3685 Matrix (二分套二分)
Matrix Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 8674 Accepted: 2634 Descriptio ...
- poj 3685 Matrix 二分套二分 经典题型
Matrix Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 5724 Accepted: 1606 Descriptio ...
- poj 3685 Matrix 【二分】
<题目链接> 题目大意: 给你一个n*n的矩阵,这个矩阵中的每个点的数值由 i2 + 100000 × i + j2 - 100000 × j + i × j 这个公式计算得到,N( ...
- poj 3685 Matrix(二分搜索之查找第k大的值)
Description Given a N × N matrix A, whose element × i + j2 - × j + i × j, you are to find the M-th s ...
- POJ - 3685 Matrix
二分kth,答案满足的条件为:m ≤ 小于等于x的值数cntx.x和cntx单调不减,随着x增大,条件成立可表示为:0001111. 本地打一个小型的表可以发现列编号j固定时候,目标函数f(i,j)似 ...
- POJ 3579 3685(二分-查找第k大的值)
POJ 3579 题意 双重二分搜索:对列数X计算∣Xi – Xj∣组成新数列的中位数 思路 对X排序后,与X_i的差大于mid(也就是某个数大于X_i + mid)的那些数的个数如果小于N / 2的 ...
- POJ3685 Matrix —— 二分
题目链接:http://poj.org/problem?id=3685 Matrix Time Limit: 6000MS Memory Limit: 65536K Total Submissio ...
- poj 2318 叉积+二分
TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13262 Accepted: 6412 Description ...
- POJ poj 2155 Matrix
题目链接[http://poj.org/problem?id=2155] /* poj 2155 Matrix 题意:矩阵加减,单点求和 二维线段树,矩阵加减,单点求和. */ using names ...
随机推荐
- Go第六篇之结构体剖析
Go 语言通过用自定义的方式形成新的类型,结构体是类型中带有成员的复合类型.Go 语言使用结构体和结构体成员来描述真实世界的实体和实体对应的各种属性. Go 语言中的类型可以被实例化,使用new或&a ...
- QT学习资源
http://www.qter.org/portal.php?mod=view&aid=26
- C#中的DllImport使用方法
DllImport是System.Runtime.InteropServices命名空间下的一个属性类,其功能是提供从非托管DLL导出的函数的必要调用信息 DllImport属性应用于方法,要求最少要 ...
- onchange()事件的应用
本文为博主原创,未经允许不得转载: jQuery提供了很多很强大的事件,想要都掌握发现难度蛮大的,只有在不断的应用与实践中学习和掌握. 在做页面的时候,想做一个在选择下拉框选择值的时候,系统根据下拉框 ...
- 分布式事务之——tcc-transaction分布式TCC型事务框架搭建与实战案例(基于Dubbo/Dubbox)
转载请注明出处:http://blog.csdn.net/l1028386804/article/details/73731363 一.背景 有一定分布式开发经验的朋友都知道,产品/项目/系统最初为了 ...
- UVa 11054 Gergovia的酒交易
https://vjudge.net/problem/UVA-11054 题意:直线上有n个等距的村庄,每个村庄要么买酒,要么卖酒.设第i个村庄对酒的需求为ai,ai>0表示买酒,ai<0 ...
- shell :
示例一.(用作注释,占位)#!/bin/bash : this is single line comment : 'this is a multiline comment, second line e ...
- Android Fragment与Activity通讯详解
与activity通讯 尽管fragment的实现是独立于activity的,可以被用于多个activity,但是每个activity所包含的是同一个fragment的不同的实例. Fragment可 ...
- 【Golang 接口自动化01】使用标准库net/http发送Get请求
发送Get请求 使用Golang发送get请求很容易,我们还是使用http://httpbin.org作为服务端来进行演示. package main import ( "bytes&quo ...
- [Java学习] Java虚拟机(JVM)以及跨平台原理
相信大家已经了解到Java具有跨平台的特性,可以“一次编译,到处运行”,在Windows下编写的程序,无需任何修改就可以在Linux下运行,这是C和C++很难做到的. 那么,跨平台是怎样实现的呢?这就 ...