题目

链接:http://code.google.com/codejam/contest/2984486/dashboard#s=p1

googlde code jam 2014 Round1A

解题报告下载

word版

归类

动态规划,DFS

解法1[最优解]

耗时

1秒左右

分析

使用DFS和DP。目前为止的最优方案。

关键是用二维数组children_nodes[1001][1001]来表示父节点下的子节点的个数,例如

children_nodes[4][2]表示当2节点作为4节点的父亲的时候,4节点极其孩子节点的个数,当然前提是满足full binary tree。

children_nodes[4][2] = 1;

children_nodes[5][2] = 1;

children_nodes[2][1] = 3;

children_nodes[3][1] = 1;

通过children_nodes来记录计算的中间结果,可以大大加速DFS递归。

源码

#include <algorithm>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <map>
#include <sstream>
#include <string>
#include <vector> using std::cin;
using std::cout;
using std::endl;
using std::fstream;
using std::map;
using std::stringstream;
using std::string;
using std::vector; int
get_result(const vector<vector<int> > &_matrix); int
get_max(const vector<vector<int> > &_matrix, const int _child_row, const int _parent); int children_nodes[][]; int main(int argc, char *argv[])
{
int case_amount = ;
cin >> case_amount; for (int i = ; i < case_amount; ++i)
{
memset(children_nodes, , sizeof(children_nodes)); int N = ;
cin >> N; // Step1: Init
vector<vector<int> > matrix(N + , vector<int>()); for (int j = ; j < N - ; ++j)
{
int row = , column = ;
cin >> row >> column; matrix[row].push_back(column);
matrix[column].push_back(row);
} const int result = get_result(matrix);
cout << "Case #" << + i << ": " << result << endl;
} return ;
} int
get_result(const vector<vector<int> > &_matrix)
{
int max = ;
for (int i = ; i < _matrix.size(); ++i)
{
const int result = get_max(_matrix, i, ); if (max < result)
max = result;
} return _matrix.size() - max - ;
} int
get_max(const vector<vector<int> > &_matrix, const int _child_row, const int _parent)
{
if ( == children_nodes[_child_row][_parent])
{
vector<int> children; for (int i = ; i < _matrix[_child_row].size(); ++i)
{
if (_parent != _matrix[_child_row][i])
children.push_back(get_max(_matrix, _matrix[_child_row][i], _child_row));
} std::sort(children.begin(), children.end(), std::greater<int>()); if (children.size() < )
children_nodes[_child_row][_parent] = ;
else
children_nodes[_child_row][_parent] = + children[] + children[];
} return children_nodes[_child_row][_parent];
}

解法2[原来递归不会超时]

耗时

20秒左右

分析

使用DFS,深度优先搜索。

实例

Step1:初始化

       

1

2

3

 

2

1

4

 

3

1

7

 

4

2

5

6

5

4

   

6

4

   

7

3

   

Step2:遍历1-7行

分别计算以每行为root节点的最大节点数;

节点数最多的行,就是root节点,即可得知答案。

源码

#include <algorithm>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <map>
#include <sstream>
#include <string>
#include <vector> using std::cout;
using std::endl;
using std::fstream;
using std::map;
using std::stringstream;
using std::string;
using std::vector; fstream fs("input.txt", fstream::in);
fstream fout("output.txt", fstream::out); int
get_int_from_next_line(); string
get_string_from_next_line(); int
get_result(const vector<vector<int> > &_matrix); int
get_max(const vector<vector<int> > &_matrix, const int _child_row, const int _parent); int main(int argc, char *argv[])
{
if (fs.good())
{
const int case_amount = get_int_from_next_line(); for (int i = ; i < case_amount; ++i)
{
const int N = get_int_from_next_line(); // Step1: Init
vector<vector<int> > matrix(N, vector<int>()); for (int j = ; j < N - ; ++j)
{
const string line = get_string_from_next_line();
int row = , column = ;
stringstream temp_stream(line);
temp_stream >> row >> column; matrix[row-].push_back(column-);
matrix[column-].push_back(row-);
} const int result = get_result(matrix);
fout << "Case #" << + i << ": " << result << endl;
}
} fs.close();
fout.close();
return ;
} int
get_int_from_next_line()
{
string line = "";
getline(fs, line);
stringstream stream(line);
int temp = ;
stream >> temp;
return temp;
} string
get_string_from_next_line()
{
string line = "";
getline(fs, line);
return line;
} int
get_result(const vector<vector<int> > &_matrix)
{
int max = ;
for (int i = ; i < _matrix.size(); ++i)
{
int result = get_max(_matrix, i, -); if (max < result)
max = result;
} return _matrix.size() - max;
} int
get_max(const vector<vector<int> > &_matrix, const int _child_row, const int _parent)
{
vector<int> children; for (int i = ; i < _matrix[_child_row].size(); ++i)
{
if (_parent != _matrix[_child_row][i])
children.push_back(get_max(_matrix, _matrix[_child_row][i], _child_row));
} std::sort(children.begin(), children.end(), std::greater<int>()); if (children.size() < )
return ;
else
return + children[] + children[];
}

解法3[很笨的方法,自作聪明了]

耗时

3分钟

分析

注意

题目中给出了Full Binary Tree的定义,只要满足root的每一个子节点有2个或0个子节点。

题目中给出X-Y,说X距离root节点比Y近,没有用。

题目中给出树G没有环。

顶点V与n(n>=3)个点有边

1.    有1,2,3,…,N个顶点,根据输入的关系,初始化二维数组array[N][N]

例如:

1.1    默认初始值为-2

1.2    有边相连,则设置为-1

2    如果N=1直接返回0,N=2直接返回1;如果N>2,则预处理,设row表示第几行,row=0àN-1,即第row节点

如果row行只有一个-1,则继续,否则row++

row节点就是叶子节点,第column列为-1,设置array[row][column]=0,并将与该节点相连的另一个节点,对应的值设置为1,array[column][row]=1

3    设row表示第几行,row=0àN-1,即第row节点

3.0    bool isHasNegtiveOne = false; 表示是否含有-1

3.1    如果row行只有一个-1,则继续,否则跳到3.4;isHasNegtiveOne= true,假设array[row][column]==-1,如果第column行除了第row列没有-1,那么跳到3.2,否则跳到3.3

3.2    如果第column行,除了第row列,非-2的列的数目大于等于2,则

跳到3.2.1,否则跳到3.2.2

3.2.1    在column行选择最大的两列,假设最大两列的和为max,设置array[row][column] = 1 + max;跳到3.3

3.2.2    顶点row作为顶点column的父节点,column节点可以提供1个顶点给row节点,设置array[row][column] = 1;跳到3.3

3.3    如果第row行,除了第column列,非-2的列的数目大于等于2,则跳到3.3.1,否则跳到3.3.2

3.3.1    在row行选择最大的两列,例如下图,最大的两列为4和3,那么顶点column作为顶点row的父节点,row节点可以提供4+3+1个节点给column节点,设置array[column][row] = 8;跳到3.4

-2

4

-1

3

2

3.3.2    顶点column作为顶点row的父节点,row节点可以提供1个顶点给column节点,设置array[column][row] = 1;跳到3.4

3.4    row是否为最后一行,如果不是,则row++继续3.1,如果是,且isHasNegtiveOne为false,则跳到4,否则继续3

4    分别以每一个顶点作为root,计算最大的节点数目

5    删除节点数 = 总结点数 - 最大节点数目

实例

7

4 5    4 2    1 2    3 1    6 4    3 7

Step1:初始化

 

1

2

3

4

5

6

7

1

-2

-1

-1

-2

-2

-2

-2

2

-1

-2

-2

-1

-2

-2

-2

3

-1

-2

-2

-2

-2

-2

-1

4

-2

-1

-2

-2

-1

-1

-2

5

-2

-2

-2

-1

-2

-2

-2

6

-2

-2

-2

-1

-2

-2

-2

7

-2

-2

-1

-2

-2

-2

-2

Step2:预处理

对初始的array进行预处理

根据上图,5,6,7行都只有一个-1,例如第5行,存在边(5,4),分别设置array[4][3]=0, array[3][4]=1,即顶点5作为顶点4的孩子只能提供1个节点。

 

1

2

3

4

5

6

7

1

-2

-1

-1

-2

-2

-2

-2

2

-1

-2

-2

-1

-2

-2

-2

3

-1

-2

-2

-2

-2

-2

1

4

-2

-1

-2

-2

1

1

-2

5

-2

-2

-2

0

-2

-2

-2

6

-2

-2

-2

0

-2

-2

-2

7

-2

-2

0

-2

-2

-2

-2

Step3: 遍历

根据上图,3,4行只有1个-1,例如第3行,array[2][0] == -1,可推出从顶点1到顶点3,顶点1作为3的父节点,由于顶点3只有一个孩子7,所以顶点3只能提供给顶点1,1个节点,设置array[0][2]=1,同理设置array[1][3]=3。

 

1

2

3

4

5

6

7

1

-2

-1

1

-2

-2

-2

-2

2

-1

-2

-2

3

-2

-2

-2

3

-1

-2

-2

-2

-2

-2

1

4

-2

-1

-2

-2

1

1

-2

5

-2

-2

-2

0

-2

-2

-2

6

-2

-2

-2

0

-2

-2

-2

7

-2

-2

0

-2

-2

-2

-2

Step3: 遍历

根据上图,1,2,3,4行只有1个-1,例如第1行,array[0][1] == -1,可推出从顶点2到顶点1,顶点2作为1的父节点,顶点1只有顶点3一个孩子,那么顶点1只能提供顶点2, 1个节点,设置array[1][0]=1,同理设置array[0][1]=1,array[2][0]=1,array[3][1]=1。

 

1

2

3

4

5

6

7

1

-2

1

1

-2

-2

-2

-2

2

1

-2

-2

3

-2

-2

-2

3

1

-2

-2

-2

-2

-2

1

4

-2

1

-2

-2

1

1

-2

5

-2

-2

-2

0

-2

-2

-2

6

-2

-2

-2

0

-2

-2

-2

7

-2

-2

0

-2

-2

-2

-2

Step4:

根据上图,每一行都不含有-1,计算每一个顶点作为root节点的最大节点数。

   

1

2

3

4

5

6

7

3

1

-2

1

1

-2

-2

-2

-2

5

2

1

-2

-2

3

-2

-2

-2

3

3

1

-2

-2

-2

-2

-2

1

3

4

-2

1

-2

-2

1

1

-2

1

5

-2

-2

-2

0

-2

-2

-2

1

6

-2

-2

-2

0

-2

-2

-2

1

7

-2

-2

0

-2

-2

-2

-2

Step4:

节点2作为root节点,最多有5个节点,去掉2个节点即可。

   

1

2

3

4

5

6

7

3

1

-2

1

1

-2

-2

-2

-2

5

2

1

-2

-2

3

-2

-2

-2

3

3

1

-2

-2

-2

-2

-2

1

3

4

-2

1

-2

-2

1

1

-2

1

5

-2

-2

-2

0

-2

-2

-2

1

6

-2

-2

-2

0

-2

-2

-2

1

7

-2

-2

0

-2

-2

-2

-2

源码

#include <algorithm>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <map>
#include <sstream>
#include <string>
#include <vector> using std::cout;
using std::endl;
using std::fstream;
using std::map;
using std::stringstream;
using std::string;
using std::vector; fstream fs("input.txt", fstream::in);
fstream fout("output.txt", fstream::out); int
get_int_from_next_line(); string
get_string_from_next_line(); int
get_result(vector<vector<int> > _matrix); int
get_max_children(const vector<vector<int> > &_matrix, const int _row, const int _column); int main(int argc, char *argv[])
{
if (fs.good())
{
const int case_amount = get_int_from_next_line(); for (int i = ; i < case_amount; ++i)
{
const int N = get_int_from_next_line(); // Step1: Init
vector<vector<int> > matrix(N, vector<int>(N, -)); for (int j = ; j < N - ; ++j)
{
const string line = get_string_from_next_line();
int row = , column = ;
stringstream temp_stream(line);
temp_stream >> row >> column; matrix[row-][column-] = -;
matrix[column-][row-] = -;
} const int result = get_result(matrix);
fout << "Case #" << + i << ": " << result << endl;
}
} fs.close();
fout.close(); return ;
} int
get_int_from_next_line()
{
string line = "";
getline(fs, line);
stringstream stream(line);
int temp = ;
stream >> temp;
return temp;
} string
get_string_from_next_line()
{
string line = "";
getline(fs, line);
return line;
} int
get_result(vector<vector<int> > _matrix)
{
if ( == _matrix.size())
{
return ;
}
else if ( == _matrix.size())
{
return ;
} // Step2: Preprocess
for (int row = ; row < _matrix.size(); ++row)
{
const int count_not_n2 = _matrix.size() - std::count(_matrix[row].begin(), _matrix[row].end(), -);
if ( == count_not_n2)
{
const vector<int>::const_iterator it = std::find(_matrix[row].begin(), _matrix[row].end(), -);
const int column = it - _matrix[row].begin();
_matrix[row][column] = ;
_matrix[column][row] = ;
}
} // Step3: loop
while (true)
{
bool isHasNegtiveOne = false;
for (int row = ; row < _matrix.size(); ++row)
{
const int count_1 = std::count(_matrix[row].begin(), _matrix[row].end(), -);
if ( < count_1)
isHasNegtiveOne = true; if ( == count_1)
{
const vector<int>::const_iterator r_it = std::find(_matrix[row].begin(), _matrix[row].end(), -);
const int column = r_it - _matrix[row].begin(); // Step: 3.1
{
vector<int> column_vec = _matrix[column];
column_vec.erase(row + column_vec.begin());
const vector<int>::const_iterator c_it = std::find(column_vec.begin(), column_vec.end(), -);
if (c_it == column_vec.end())
{
// Step: 3.2
const int column_max_children = get_max_children(_matrix, column, row);
_matrix[row][column] = + column_max_children;
}
} // Step: 3.3
// column as the parent, row as the child
// calculate how many nodes can row have
const int row_max_children = get_max_children(_matrix, row, column);
_matrix[column][row] = + row_max_children;
}
} if (!isHasNegtiveOne)
break;
} // Step: 4
int max = ;
for (int row = ; row < _matrix.size(); ++row)
{
std::sort(_matrix[row].begin(), _matrix[row].end(), std::greater<int>());
int current_max = _matrix[row][] + _matrix[row][];
if (max < current_max)
max = current_max;
} return _matrix.size() - max - ;
} // column as the parent, row as the child
// calculate how many nodes can row have
int
get_max_children(const vector<vector<int> > &_matrix, const int _row, const int _column)
{
int max_children = ; // count of negtive 2
const int count_n2 = std::count(_matrix[_row].begin(), _matrix[_row].end(), -);
const int count_not_n2 = _matrix.size() - count_n2; if ( >= count_not_n2)
{
// Step: 3.3
max_children = ;
}
else
{
// Step: 3.2
// Find the max 2 of _matrix[_row] which can not be _matrix[_row][_column]
vector<int> m_row = _matrix[_row];
m_row.erase(_column + m_row.begin());
std::sort(m_row.begin(), m_row.end(), std::greater<int>());
max_children = m_row[] + m_row[];
} return max_children;
}

总结

DP+DFS需要1秒;纯DFS需要20秒,我的自作聪明的DP需要3分钟。算法很关键哇!

Problem B. Full Binary Tree的更多相关文章

  1. [LeetCode&Python] Problem 226. Invert Binary Tree

    Invert a binary tree. Example: Input: 4 / \ 2 7 / \ / \ 1 3 6 9 Output: 4 / \ 7 2 / \ / \ 9 6 3 1 Tr ...

  2. Google Code Jam 2014 Round 1 A:Problem B. Full Binary Tree

    Problem A tree is a connected graph with no cycles. A rooted tree is a tree in which one special ver ...

  3. Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never diffe

    class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } public class ...

  4. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  5. [LeetCode] Balanced Binary Tree 平衡二叉树

    Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...

  6. LeetCode——Balanced Binary Tree(判断是否平衡二叉树)

    问题: Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced bin ...

  7. Balanced Binary Tree [LeetCode]

    Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...

  8. 110.Balanced Binary Tree Leetcode解题笔记

    110.Balanced Binary Tree Given a binary tree, determine if it is height-balanced. For this problem, ...

  9. [Leetcode][JAVA] Minimum Depth of Binary Tree && Balanced Binary Tree && Maximum Depth of Binary Tree

    Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum depth is the n ...

随机推荐

  1. 报错---“node install.js”

    如图 解决方案: 目录中执行 npm install chromedriver --chromedriver_cdnurl=http://cdn.npm.taobao.org/dist/chromed ...

  2. sencha touch 自定义cardpanel控件 模仿改进NavigationView 灵活添加按钮组,导航栏,自由隐藏返回按钮(废弃 仅参考)

    最新版本我将会放在:http://www.cnblogs.com/mlzs/p/3382229.html这里的示例里面,这里不会再做更新 代码: /* *模仿且改进NavigationView *返回 ...

  3. [Sdoi2016]齿轮

    4602: [Sdoi2016]齿轮 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 613  Solved: 324 [Submit][Status ...

  4. 【CF720D】Slalom 扫描线+线段树

    [CF720D]Slalom 题意:一个n*m的网格,其中有k个矩形障碍,保证这些障碍不重叠.问你从(1,1)走到(n,m),每步只能往右或往上走,不经过任何障碍的方案数.两种方案被视为不同,当且仅当 ...

  5. Unity3D笔记 英保通一

    一.材质和着色器 1.材质和着色器紧密的联系,其中材质相当于是一个框架,而着色器就是框架中中的内容.在材质框架中可以选择不同的Shader并调节不同的 属性 Material和Physic Mater ...

  6. STS没有找到Dynamic Web Project

    解决:安装JavaEE插件 help-> install new software-> 选择sts对应的eclipse版本站点,如eclipse版本4.09选择2018-09.4.10选择 ...

  7. Hibernate的10个常见面试问题及答案

    在Java J2EE方面进行面试时,常被问起的Hibernate面试问题,大多都是针对基于Web的企业级应用开发者的角色的.Hibernate框架在Java界的成功和高度的可接受性使得它成为了Java ...

  8. php代码不支持多维数组,注释和没有缓存功能。

    php代码:simplet.class.php<?phpclass SimpleT {private $t_vars;private $templates_dir;private $templa ...

  9. 2016江苏省CPC省赛 I - Itinerary Planning

    Description Mike moved to a new city. There are bus stations in the city, each has a unique name. Ea ...

  10. 删除RAC集群节点

    删除GRID集群节点:参考oracle database 11g RAC手册(第二版) 目前GRID集群中节点信息:[grid@node1 ~]$ olsnodesnode1node2node3nod ...