【UVA 11077】 Find the Permutations (置换+第一类斯特林数)
Find the Permutations
Sorting is one of the most used operations in real life, where Computer Science comes into act. It is well-known that the lower bound of swap based sorting is nlog(n). It means that the best possible sorting algorithm will take at least O(nlog(n)) swaps to sort a set of n integers. However, to sort a particular array of n integers, you can always find a swapping sequence of at most (n − 1) swaps, once you know the position of each element in the sorted sequence. For example consider four elements <1 2 3 4>. There are 24 possible permutations and for all elements you know the position in sorted sequence. If the permutation is <2 1 4 3>, it will take minimum 2 swaps to make it sorted. If the sequence is <2 3 4 1>, at least 3 swaps are required. The sequence <4 2 3 1> requires only 1 and the sequence <1 2 3 4> requires none. In this way, we can find the permutations of N distinct integers which will take at least K swaps to be sorted. Input Each input consists of two positive integers N (1 ≤ N ≤ 21) and K (0 ≤ K < N) in a single line. Input is terminated by two zeros. There can be at most 250 test cases. Output For each of the input, print in a line the number of permutations which will take at least K swaps.
Sample Input
3 1
3 0
3 2
0 0
Sample Output
3
1
2
【题意】
给出1~n的一个排列,可以通过一系列的交换变成{1,2,…,n}。比如{2,1,4,3}需要两次交换。给定n和k,统计有多少个排列至少需要k次交换才能变成{1,2,…,n}。
【分析】
先考虑一下怎么计算最少变换次数。
显然,如果把它弄成x个循环的乘积,最少变换次数为n-x。
问题变成了,给你n个数,分成n-x份的圆排列方案。这个方案刚好就是第一类斯特林数啊。
所以很简单,用第一类斯特林数的方程求方案就行了。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL unsigned long long
#define Maxn LL s1[][]; void init()
{
memset(s1,,sizeof());
s1[][]=;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
s1[i][j]=s1[i-][j-]+s1[i-][j]*(i-);
// printf("==%lld\n",s1[2][0]);
} int main()
{
init();
int n,k;
while()
{
scanf("%d%d",&n,&k);
if(n==&&k==) break;
printf("%llu\n",s1[n][n-k]);
}
return ;
}
注意要用unsigned long long ,还是看了别人的代码才知道的。。。不然会WA、。。。。
其实这题只是用了小小的置换的思想而已。
2017-01-11 19:16:56
【UVA 11077】 Find the Permutations (置换+第一类斯特林数)的更多相关文章
- Codeforces 715E - Complete the Permutations(第一类斯特林数)
Codeforces 题面传送门 & 洛谷题面传送门 神仙题.在 AC 此题之前,此题已经在我的任务计划中躺了 5 个月的灰了. 首先考虑这个最短距离是什么东西,有点常识的人(大雾)应该知道, ...
- UVA - 11077 Find the Permutations (置换)
Sorting is one of the most usedoperations in real life, where Computer Science comes into act. It is ...
- UVA11077 Find the Permutations —— 置换、第一类斯特林数
题目链接:https://vjudge.net/problem/UVA-11077 题意: 问n的全排列中多有少个至少需要交换k次才能变成{1,2,3……n}. 题解: 1.根据过程的互逆性,可直接求 ...
- 【CF715E】Complete the Permutations(容斥,第一类斯特林数)
[CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...
- UVA 11077 - Find the Permutations(递推)
UVA 11077 - Find the Permutations option=com_onlinejudge&Itemid=8&page=show_problem&cate ...
- 【HDU 4372】 Count the Buildings (第一类斯特林数)
Count the Buildings Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms
Examining the Rooms Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 如何快速求解第一类斯特林数--nlog^2n + nlogn
目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...
- 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation
目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...
随机推荐
- RabbitMQ与AMQP
1. 消息队列的历史 了解一件事情的来龙去脉,将不会对它感到神秘.让我们来看看消息队列(Message Queue)这项技术的发展历史. Message Queue的需求由来已久,80年代最早在金融交 ...
- 五分钟学习Java8的流编程
1.概述 Java8中在Collection中增加了一个stream()方法,该方法返回一个Stream类型.我们就是用该Stream来进行流编程的: 流与集合不同,流是只有在按需计算的,而集合是已经 ...
- [Unity]多线程编程的一点心得
在做毕设的时候涉及到了较大数据的读取,每次从硬盘读都会卡很久,于是找资料之后自己做了个简单的多线程解决方案. 一共有两个类.第一个类ThreadJob如下: using System.Collecti ...
- Python第三方库wordcloud(词云)快速入门与进阶
前言: 笔主开发环境:Python3+Windows 推荐初学者使用Anaconda来搭建Python环境,这样很方便而且能提高学习速度与效率. 简介: wordcloud是Python中的一个小巧的 ...
- CMD命令行下载文件
远程执行sct的另一种姿势 cscript /b C:\Windows\System32\Printing_Admin_Scripts\zh-CN\pubprn.vbs 127.0.0.1 scrip ...
- 在linux下有没有什么软件可以连接windows上的MSSQL SERVER
在linux下有没有什么软件可以连接windows上的MSSQL SERVER GUI的http://dbeaver.jkiss.org/ http://bbs.csdn.net/topics/391 ...
- memcached结合php以及memcache共享session
//安装php的memcache扩展 一.使用php自带的pecl安装程序 [root@localhost src]# /usr/local/php/bin/pecl install memcache ...
- 1.Python3标准库--前戏
Python有一个很大的优势便是在于其拥有丰富的第三方库,可以解决很多很多问题.其实Python的标准库也是非常丰富的,今后我将介绍一下Python的标准库. 这个教程使用的书籍就叫做<Pyth ...
- [ python ] hasattr()、getattr()、setattr() 三者关系及运用
hasattr(object, name) 判断一个对象(object)是否存在name属性或方法,返回boolean值,有name属性返回True, 否则返回False In [1]: class ...
- SQL中判断值是否为NULL
在 SQL 中,我们如果在操作数据库时使用 WHERE 子句判断一个列的值是否为 NULL,我们不能够使用 column_name=null 来进行判断,这是不正确的,我们应该使用 is null 来 ...