[BZOJ2726][SDOI2012]任务安排(DP+凸壳二分)
2726: [SDOI2012]任务安排
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1580 Solved: 466
[Submit][Status][Discuss]Description
机
器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的
若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是
各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。Input
第一行两个整数,N,S。接下来N行每行两个整数,Ti,Fi。Output
一个整数,为所求的答案。Sample Input
5 1
1 3
3 2
4 3
2 3
1 4Sample Output
153HINT
Source
复习了无数次CDQ分治和斜率优化,CDQ分治真的是博大精深。
但是,这道题,要个鬼CDQ分治啊!询问斜率不单调又不是插入点横坐标不单调!直接二分找切点不就好了!
说下思路吧,首先$O(n^3)$的DP谁都想得出来,考虑优化,f[i]记录前i个物品的信息。
但是问题来了,时间有后效性,前面的总时间对后面有影响,除非多设一维时间状态,而这样又是$n^3$的了,那么我们干脆就考虑前i个物品的总费用以及这i个物品给后面所有物品带来的费用之和。显然这样是满足无后效性,同时也满足最优子结构的。
设F[i]=f[i]前缀和,T[i]同理,则有DP方程:$dp[i]=min\{dp[j]+(T[i]-T[j]+S)(F[n]-F[j])\}$。这样复杂度就变为$O(n^2)$了。
熟练的选手一眼就知道这是斜率优化的形式,复杂度立刻降为$O(n)$。
但是!看Discuss知道这题的时间可以是负的!于是网上几乎所有的题解立刻全部变为CDQ分治版本,但其实并不需要,因为插入的点的横坐标仍然是单调的所以并不需要动态维护凸壳。询问斜率不单调的话直接二分找直线和凸壳的切点即可。这一点也是这题和货币兑换Cash的一个本质区别。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
ll T[N],F[N],f[N];
int n,s,S,st,ed,q[N]; ll Y(int j){ return f[j]-F[n]*T[j]+F[j]*T[j]-F[j]*S; } void dp(){
st=ed=;
rep(i,,n){
int l=,r=ed-,ans=ed;
while (l<=r){
ll mid=(l+r)>>;
if (1ll*(F[q[mid+]]-F[q[mid]])*T[i]<=Y(q[mid+])-Y(q[mid])) ans=mid,r=mid-; else l=mid+;
}
int j=q[ans]; f[i]=f[j]+(F[n]-F[j])*(T[i]-T[j]+S);
while (st<ed && 1ll*(Y(q[ed])-Y(q[ed-]))*(F[i]-F[q[ed]])>=(Y(i)-Y(q[ed]))*(F[q[ed]]-F[q[ed-]])) ed--;
q[++ed]=i;
}
} int main(){
freopen("bzoj2726.in","r",stdin);
freopen("bzoj2726.out","w",stdout);
scanf("%d%d",&n,&S);
rep(i,,n) scanf("%lld%lld",&T[i],&F[i]),T[i]+=T[i-],F[i]+=F[i-];
dp(); printf("%lld\n",f[n]);
return ;
}
[BZOJ2726][SDOI2012]任务安排(DP+凸壳二分)的更多相关文章
- BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分
BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这 ...
- 2018.09.05 bzoj2726: [SDOI2012]任务安排(斜率优化dp+二分)
传送门 跟Ti" role="presentation" style="position: relative;">TiTi为正数的时候差不多. ...
- BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )
考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N) F, T均为后缀和. 与j有关 ...
- BZOJ.2726.[SDOI2012]任务安排(DP 斜率优化)
题目链接 数据范围在这:https://lydsy.com/JudgeOnline/wttl/thread.php?tid=613, 另外是\(n\leq3\times10^5\). 用\(t_i\) ...
- bzoj2402 陶陶的难题II 分数规划+树剖+线段树维护凸壳+二分
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2402 题解 看上去很像分数规划的模型.于是就二分吧.令 \[ \begin{align*}\f ...
- BZOJ 2726: [SDOI2012]任务安排 斜率优化 + 凸壳二分 + 卡精
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...
- [bzoj2726][SDOI2012]任务安排 ——斜率优化,动态规划,二分,代价提前计算
题解 本题的状态很容易设计: f[i] 为到第i个物件的最小代价. 但是方程不容易设计,因为有"后效性" 有两种方法解决: 1)倒过来设计动态规划,典型的,可以设计这样的方程: d ...
- BZOJ2726 [SDOI2012]任务安排 【斜率优化 + cdq分治】
题目 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i ...
- BZOJ2726: [SDOI2012]任务安排
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2726 倒着做,前面的点对后面的点都是有贡献的. f[i]=min(f[j]+cost[i]*( ...
随机推荐
- 「6月雅礼集训 2017 Day4」qyh(bzoj2687 交与并)
原题传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2687 [题目大意] 给出若干区间,求一个区间的大于等于2的子集,使得 |区间并| 和 | ...
- UOJ#21 【UR #1】缩进优化
传送门 http://uoj.ac/problem/21 枚举 (调和级数?) $\sum_{i=1}^{n} (a_i / x + a_i \bmod x) =\sum a_i - (\sum_{i ...
- Spring理论基础-面向切面编程
AOP是Aspect-Oriented Programming的缩写,中文翻译是面向切面编程.作为Spring的特征之一,是要好好学习的. 首先面向切面编程这个名称很容易让人想起面向对象编程(OOP) ...
- 新建一个express工程,node app无反应
1.问题描述 新建一个express工程,node app以后无反应,浏览器输入localhost:3000,显示如下 2.解决方法 在app.js文件中加入如下代码 app.listen(3000, ...
- JDBC+Servlet+JSP实现基本的增删改查(简易通讯录)
前言: 最近学习JavaWeb的过程中,自己实践练手了几个小项目,目前已经上传到我的Github上https://github.com/Snailclimb/JavaWebProject.目前只上传了 ...
- python设计模式之单例模式(二)
上次我们简单了解了一下什么是单例模式,今天我们继续探究.上次的内容点这 python设计模式之单例模式(一) 上次们讨论的是GoF的单例设计模式,该模式是指:一个类有且只有一个对象.通常我们需要的是让 ...
- tomcat组成介绍和调优方案
1.tomcat组成介绍 1.1 目录组成介绍 1.2 启动tomcat中遇到的问题 a.启动过程中出现很多异常:因为端口被占用了 解决方式1:修改Tomcat\conf\server.xml中的默认 ...
- HTML5API(5)
一.SVG 1.svg与canvas的区别 canvas绘制的是位图,svg绘制的是矢量图 canvas使用JavaScript绘制,svg使用xml绘制 canvas不能给每个图形绑定事件,svg可 ...
- canvas写的地铁地图
更新: 18-9-21:填了个坑,更新了canvas绘制过程. 根据的是百度提供的坐标,canvas的坐标是大的坐标在后面,所以跟实际生活方向相反. 所以canvas里的北方在下方,实际生活中北方在上 ...
- 在Xcode中使用自定义的代码片段提高效率
拖动代码的时候按住option键,很难拖,注意方法:< 引用于:http://www.2cto.com/kf/201409/336245.html