k近邻算法python实现 -- 《机器学习实战》
'''
Created on Nov 06, 2017
kNN: k Nearest Neighbors Input: inX: vector to compare to existing dataset (1xN)
dataSet: size m data set of known vectors (NxM)
labels: data set labels (1xM vector)
k: number of neighbors to use for comparison (should be an odd number) Output: the most popular class label @author: Liu Chuanfeng
'''
import operator
import numpy as np
import matplotlib.pyplot as plt
from os import listdir def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)
return sortedClassCount[0][0] #数据预处理,将文件中数据转换为矩阵类型
def file2matrix(filename):
fr = open(filename)
arrayLines = fr.readlines()
numberOfLines = len(arrayLines)
returnMat = np.zeros((numberOfLines, 3))
classLabelVector = []
index = 0
for line in arrayLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat, classLabelVector #数据归一化处理:由于矩阵各列数据取值范围的巨大差异导致各列对计算结果的影响大小不一,需要归一化以保证相同的影响权重
def autoNorm(dataSet):
maxVals = dataSet.max(0)
minVals = dataSet.min(0)
ranges = maxVals - minVals
m = dataSet.shape[0]
normDataSet = (dataSet - np.tile(minVals, (m, 1))) / np.tile(ranges, (m, 1))
return normDataSet, ranges, minVals #约会网站测试代码
def datingClassTest():
hoRatio = 0.10
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m * hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifyResult = classify0(normMat[i,:], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
print('theclassifier came back with: %d, the real answer is: %d' % (classifyResult, datingLabels[i]))
if ( classifyResult != datingLabels[i]):
errorCount += 1.0
print ('the total error rate is: %.1f%%' % (errorCount/float(numTestVecs) * 100)) #约会网站预测函数
def classifyPerson():
resultList = ['not at all', 'in small doses', 'in large doses']
percentTats = float(input("percentage of time spent playing video games?"))
ffMiles = float(input("frequent flier miles earned per year?"))
iceCream = float(input("liters of ice cream consumed per year?"))
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = np.array([ffMiles, percentTats, iceCream])
classifyResult = classify0((inArr-minVals)/ranges, normMat, datingLabels, 3)
print ("You will probably like this persoon:", resultList[classifyResult - 1]) #手写识别系统#============================================================================================================
#数据预处理:输入图片为32*32的文本类型,将其形状转换为1*1024
def img2vector(filename):
returnVect = np.zeros((1, 1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0, 32*i+j] = int(lineStr[j])
return returnVect #手写数字识别系统测试代码
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('C:\\Private\\PycharmProjects\\Algorithm\\kNN\digits\\traingDigits')
m = len(trainingFileList)
trainingMat = np.zeros((m, 1024))
for i in range(m): #|
fileNameStr = trainingFileList[i] #|
fileName = fileNameStr.split('.')[0] #| 获取训练集路径下每一个文件,分割文件名,将第一个数字作为标签存储在hwLabels中
classNumber = int(fileName.split('_')[0]) #|
hwLabels.append(classNumber) #|
trainingMat[i,:] = img2vector('C:\\Private\\PycharmProjects\\Algorithm\\kNN\digits\\traingDigits\\%s' % fileNameStr) #变换矩阵形状: from 32*32 to 1*1024
testFileList = listdir('C:\\Private\\PycharmProjects\\Algorithm\\kNN\digits\\testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest): #同训练集
fileNameStr = testFileList[i]
fileName = fileNameStr.split('.')[0]
classNumber = int(fileName.split('_')[0])
vectorUnderTest = img2vector('C:\\Private\\PycharmProjects\\Algorithm\\kNN\digits\\testDigits\\%s' % fileNameStr)
classifyResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) #计算欧氏距离并分类,返回计算结果
print ('The classifier came back with: %d, the real answer is: %d' % (classifyResult, classNumber))
if (classifyResult != classNumber):
errorCount += 1.0
print ('The total number of errors is: %d' % (errorCount))
print ('The total error rate is: %.1f%%' % (errorCount/float(mTest) * 100)) # Simple unit test of func: file2matrix()
#datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
#print (datingDataMat)
#print (datingLabels) # Usage of figure construction of matplotlib
#fig=plt.figure()
#ax = fig.add_subplot(111)
#ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 15.0*np.array(datingLabels), 15.0*np.array(datingLabels))
#plt.show() # Simple unit test of func: autoNorm()
#normMat, ranges, minVals = autoNorm(datingDataMat)
#print (normMat)
#print (ranges)
#print (minVals) # Simple unit test of func: img2vector
#testVect = img2vector('C:\\Private\\PycharmProjects\\Algorithm\\kNN\digits\\testDigits\\0_13.txt')
#print (testVect[0, 32:63] ) #约会网站测试
datingClassTest() #约会网站预测
classifyPerson() #手写数字识别系统预测
handwritingClassTest()
Output:
theclassifier came back with: 3, the real answer is: 3
the total error rate is: 0.0%
theclassifier came back with: 2, the real answer is: 2
the total error rate is: 0.0%
theclassifier came back with: 1, the real answer is: 1
the total error rate is: 0.0%
...
theclassifier came back with: 2, the real answer is: 2
the total error rate is: 4.0%
theclassifier came back with: 1, the real answer is: 1
the total error rate is: 4.0%
theclassifier came back with: 3, the real answer is: 1
the total error rate is: 5.0%
percentage of time spent playing video games?10
frequent flier miles earned per year?10000
liters of ice cream consumed per year?0.5
You will probably like this persoon: in small doses
...
The classifier came back with: 9, the real answer is: 9
The total number of errors is: 27
The total error rate is: 6.8%
Reference:
《机器学习实战》
k近邻算法python实现 -- 《机器学习实战》的更多相关文章
- AI小记-K近邻算法
K近邻算法和其他机器学习模型比,有个特点:即非参数化的局部模型. 其他机器学习模型一般都是基于训练数据,得出一般性知识,这些知识的表现是一个全局性模型的结构和参数.模型你和好了后,不再依赖训练数据,直 ...
- K近邻 Python实现 机器学习实战(Machine Learning in Action)
算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...
- 机器学习实战 - python3 学习笔记(一) - k近邻算法
一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进 ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
- python 机器学习(二)分类算法-k近邻算法
一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提 ...
- 用Python从零开始实现K近邻算法
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通 ...
- 《机实战》第2章 K近邻算法实战(KNN)
1.准备:使用Python导入数据 1.创建kNN.py文件,并在其中增加下面的代码: from numpy import * #导入科学计算包 import operator #运算符模块,k近邻算 ...
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
随机推荐
- jquery.cookie中的操作之与换肤
jquery.cookie.js的插件,插件的源代码如下: /** * Cookie plugin * * Copyright (c) 2006 Klaus Hartl (stilbuero.de) ...
- 单元测试时使用Ninject的小问题
主要是Kernel没有被释放,Ninject的Kernel必须调用IDispose释放.也有可能是静态类型在VS单元测试时无法被释放. 先记录下这个问题
- Sublime Text 2 入门与总结
Sublime Text 2 入门与总结 首语 : 考完试,但又没什么兴趣做课程设计,蛋疼的弄点软件入门的介绍,希望给各位还在吃香蕉的程序猿带来一点启示... 代码编辑器,就像武侠中的武 ...
- Java Servlet/JSP容器配置 session id
http://www.eclipse.org/jetty/documentation/current/session-management.html#setting-session-character ...
- 李洪强和你一起学习前端之(3)Css基础和选择器
大家好! 经过了前面的学习,是不是对前端的学习有了初步的了解.虽然我之前有iOS开发的经验,现在接触一门新的语言,对我来说 有一定的优势,但是一门技术对于谁来说都是公平的,我承认,我在接触新知识的时候 ...
- js中对小数取整
js中对小数取整的函数,需要的朋友可以参考下. 1.丢弃小数部分,保留整数部分 js:parseInt(7/2) 2.向上取整,有小数就整数部分加1 js: Math.ceil(7/2) 3,四舍 ...
- ExtPager ,分页
package cn.edu.hbcf.common.vo; public class ExtPager { private Integer start; private Integer limit; ...
- makefile的选项LDFLAGS和LIBS的区别
LDFLAGS是选项,LIBS是要链接的库.都是喂给ld的,只不过一个是告诉ld怎么吃,一个是告诉ld要吃什么. 网上不难搜索到上面这段话.不过“告诉ld怎么吃”是什么意思呢? 看看如下选项: LDF ...
- gitlab手残点错关闭注册No authentication methods configured on login page
Gitlab - 如何解決 "No authentication methods configured on login page" ? (gitlab version : 8.1 ...
- 13 memcache服务检查
[root@cache01 scripts]# vim mem_check.sh #!/bin/bash count_mem=$(netstat -lntup|grep memcached|wc -l ...