250:

题目大意:

在一个N行无限大的网格图里,每经过一个格子都要付出一定的代价。同一行的每个格子代价相同。 给出起点和终点,求从起点到终点的付出的最少代价。

思路:

最优方案肯定是从起点沿竖直方向走到某一行,然后沿水平方向走到终点那一列,然后再沿竖直方向走到终点那一行。

枚举是通过哪一行的格子从起点那列走到终点那列的,求个最小值就好了。

代码:

 // BEGIN CUT HERE  

 // END CUT HERE
#line 5 "LongMansionDiv1.cpp"
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <cstring>
using namespace std; typedef long long ll; class LongMansionDiv1
{
public:
ll F(int i, int j, vector <int> &t)
{
ll res = ;
if (i > j) swap(i, j);
for (int k = i; k <= j; ++k)
res += t[k];
return res;
}
long long minimalTime(vector <int> t, int sX, int sY, int eX, int eY)
{
//$CARETPOSITION$
int n = t.size();
if (sY > eY) swap(sX, eX), swap(sY, eY);
ll ans = 1e18;
for (int j = ; j < n; ++j)
{
ans = min(ans, F(sX, j, t) + 1ll * t[j] * (eY - sY + ) + F(j, eX, t) - t[j] - t[j]);
}
return ans;
} // BEGIN CUT HERE
public:
void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0(); if ((Case == -) || (Case == )) test_case_1(); if ((Case == -) || (Case == )) test_case_2(); if ((Case == -) || (Case == )) test_case_3(); if ((Case == -) || (Case == )) test_case_4(); }
private:
template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
void verify_case(int Case, const long long &Expected, const long long &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
void test_case_0() { int Arr0[] = {, , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; long long Arg5 = 29LL; verify_case(, Arg5, minimalTime(Arg0, Arg1, Arg2, Arg3, Arg4)); }
void test_case_1() { int Arr0[] = {, , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; long long Arg5 = 15LL; verify_case(, Arg5, minimalTime(Arg0, Arg1, Arg2, Arg3, Arg4)); }
void test_case_2() { int Arr0[] = {, , , , , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; long long Arg5 = 1016LL; verify_case(, Arg5, minimalTime(Arg0, Arg1, Arg2, Arg3, Arg4)); }
void test_case_3() { int Arr0[] = {, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; long long Arg5 = 293443080673LL; verify_case(, Arg5, minimalTime(Arg0, Arg1, Arg2, Arg3, Arg4)); }
void test_case_4() { int Arr0[] = {}; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arg1 = ; int Arg2 = ; int Arg3 = ; int Arg4 = ; long long Arg5 = 1LL; verify_case(, Arg5, minimalTime(Arg0, Arg1, Arg2, Arg3, Arg4)); } // END CUT HERE }; // BEGIN CUT HERE
int main()
{
LongMansionDiv1 ___test;
___test.run_test(-);
system("pause");
}
// END CUT HERE

500:

题目大意:

给出一棵以0为根的树,从根出发,走过一些节点。 每个节点有一个得分,可能正可能负,可以重复经过节点,但是只有第一次经过会改变当前得分。 如果当前得分为负,会马上变成0.

求最大得分。

比赛的时候没有想出来,好菜菜QAQ。

思路:

这道题主要是 “如果当前得分为负,会马上变成0” 这个地方不好处理。

考虑最后一次得分由负变成0的时刻。这个时候访问过的节点也组成以0为根的树,可以认为这棵树上的节点的得分都是0.

因此可以把问题转化一下:

可以把包含节点0的一个联通块内的节点得分都变成0, 然后再求一个包含节点0的联通块得分和最大。

用A,B两个数组来做DP。

A[x]表示考虑以x为根的子树,且x必须取的最大值。

B[x]表示考虑以x为根的子树,且允许把x的权值变成0(相当于允许不取x)的最大值。

A[x] =  max(val[x] + sum(A[sons of x]), 0)

B[x] =  max(sum(B[sons of x], A[x]))

代码:

 // BEGIN CUT HERE  

 // END CUT HERE
#line 5 "OwaskiAndTree.cpp"
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <cstring>
using namespace std;
class OwaskiAndTree
{
public:
int maximalScore(vector <int> parent, vector <int> pleasure)
{
//$CARETPOSITION$
int n = pleasure.size();
long long a[] = {}, b[] = {};
for (int i = n - ; i >= ; --i)
{
a[i] += pleasure[i];
a[i] = max(a[i], 0ll);
b[i] = max(b[i], a[i]); if (i == ) continue;
int u = parent[i - ];
a[u] += max(a[i], 0ll);
b[u] += b[i];
}
return b[];
} // BEGIN CUT HERE
public:
void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0(); if ((Case == -) || (Case == )) test_case_1(); if ((Case == -) || (Case == )) test_case_2(); if ((Case == -) || (Case == )) test_case_3(); if ((Case == -) || (Case == )) test_case_4(); }
private:
template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
void test_case_0() { int Arr0[] = {, , , , , , , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arr1[] = {, , -, -, -, -, , , , }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); int Arg2 = ; verify_case(, Arg2, maximalScore(Arg0, Arg1)); }
void test_case_1() { int Arr0[] = {, , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arr1[] = {, , , -, -}; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); int Arg2 = ; verify_case(, Arg2, maximalScore(Arg0, Arg1)); }
void test_case_2() { int Arr0[] = {, , , , , , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arr1[] = {, , -, -, , , , -, }; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); int Arg2 = ; verify_case(, Arg2, maximalScore(Arg0, Arg1)); }
void test_case_3() { int Arr0[] = {, , , , , , , , , , , , , , , , , , }; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arr1[] = {-, , , , -, , -, -, , -, , -, , , -, , , -, , -}; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); int Arg2 = ; verify_case(, Arg2, maximalScore(Arg0, Arg1)); }
void test_case_4() { int Arr0[] = {}; vector <int> Arg0(Arr0, Arr0 + (sizeof(Arr0) / sizeof(Arr0[]))); int Arr1[] = {-}; vector <int> Arg1(Arr1, Arr1 + (sizeof(Arr1) / sizeof(Arr1[]))); int Arg2 = ; verify_case(, Arg2, maximalScore(Arg0, Arg1)); } // END CUT HERE }; // BEGIN CUT HERE
int main()
{
OwaskiAndTree ___test;
___test.run_test(-);
system("pause");
}
// END CUT HERE

SRM 719 Div 1 250 500的更多相关文章

  1. 竞赛图的得分序列 (SRM 717 div 1 250)

    SRM 717 DIV 1 中 出了这样一道题: 竞赛图就是把一个无向完全图的边定向后得到的有向图,得分序列就是每个点的出度构成的序列. 给出一个合法的竞赛图出度序列, 要求构造出原图(原题是求(u, ...

  2. Topcoder SRM 656 (Div.1) 250 RandomPancakeStack - 概率+记忆化搜索

    最近连续三次TC爆零了,,,我的心好痛. 不知怎么想的,这题把题意理解成,第一次选择j,第二次选择i后,只能从1~i-1.i+1~j找,其实还可以从j+1~n中找,只要没有被选中过就行... [题意] ...

  3. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  4. Topcoder SRM 661 (Div.1) 250 MissingLCM - 数论

    [题意] 给你一个数N(1<=N<=10^6),要求最小的M(M>N),使得lcm(n+1,n+2,...m)=lcm(1,2,3,...,m) [思路] 手速太慢啦,等敲完代码的时 ...

  5. 【topcoder SRM 702 DIV 2 250】TestTaking

    Problem Statement Recently, Alice had to take a test. The test consisted of a sequence of true/false ...

  6. Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1

    据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...

  7. TopCoder SRM 560 Div 1 - Problem 1000 BoundedOptimization & Codeforces 839 E

    传送门:https://284914869.github.io/AEoj/560.html 题目简述: 定义"项"为两个不同变量相乘. 求一个由多个不同"项"相 ...

  8. TopCoder SRM 667 Div.2题解

    概览: T1 枚举 T2 状压DP T3 DP TopCoder SRM 667 Div.2 T1 解题思路 由于数据范围很小,所以直接枚举所有点,判断是否可行.时间复杂度O(δX × δY),空间复 ...

  9. 刷题记录:Codeforces Round #719 (Div. 3)

    Codeforces Round #719 (Div. 3) 20210703.网址:https://codeforces.com/contest/1520. 没错,我是个做div3的蒟蒻-- A 大 ...

随机推荐

  1. Guava缓存使用

    public class GuavaCache { /** * LoadingCache当缓冲中不存在时,可自动加载 * */ private static LoadingCache<Integ ...

  2. 加加减减(你真的懂++--吗) C#

    目录  TOC \o "1-3" \h \z \u 自增量. PAGEREF _Toc456268662 \h 1 08D0C9EA79F9BACE118C8200AA004BA9 ...

  3. ZK框架笔记1、ZK Ajax框架简介

    简介    ZK是一个基于事件驱动和组件的框架,他为web应用提供了丰富的接口.zk包括一个基于Ajax的事件驱动引擎.一整套丰富的XML用户接口语言(XML User Interface Langu ...

  4. Net 服务命令行参考之一

    转自:http://blog.sina.com.cn/s/blog_55035e9501015p05.html ----------------------------------最实用高效的网络管理 ...

  5. LaTeX 图片插入

    一般格式: \begin{figure} \centering \includegraphics[scale=0.2]{Figure211.png} \caption{In the case of a ...

  6. Android逆向之旅---SO(ELF)文件格式详解(转)

    第一.前言 从今天开始我们正式开始Android的逆向之旅,关于逆向的相关知识,想必大家都不陌生了,逆向领域是一个充满挑战和神秘的领域.作为一名Android开发者,每个人都想去探索这个领域,因为一旦 ...

  7. 如何使用Xcode进行高保真原型设计?

    转载自:http://www.guimobile.net/xcode-high-fidelity-prototype-design.html Xcode不仅是开发者用来开发iOS Apps的开发工具, ...

  8. 运行第一个.net core程序

    前置条件 ubuntu已安装.net core运行环境 分6步 mkdir netcore 创建一个项目文件夹 cd netcore   进入该文件夹 dotnet new  new命令 用于创建一个 ...

  9. ⽤运营的思路来做无线产品測试-第13届BQConf上的分享

    ⽤运营的思路来做无线产品測试,在2014.10.25.第13届B'QConf(北京软件质量大会)上分享的一个主题.主要是关于京东无线測试的一些实践,包含android和ios的代码覆盖率.无线的接口自 ...

  10. VS2015 经常不出现智能提示,代码颜色也没有了

    重置下.开始菜单 -->所有程序-->Visual Studio 文件夹 --> Visual Studio Tools --> Developer Command Promp ...