由于笔者在别的专栏多次介绍过数论,这里在《抽象代数基础教程》的专栏下,对于chaper1数论这一章节介绍的方式不那么“入门”。

首先来介绍一个代数中常用也是非常重要的证明方法:数学归纳法。

看这样几个数学现实:

经过辛苦枯燥的计算,对于命题1,n最小的反例是41;对于命题2,n最小的反例是12055735790331359447442538767,数量级是10的二十八次方。

也就会出现这样一个事实:我们根据经验(我们这里想数学归纳法和自然归纳法混为一谈),判断每天太阳都是从东方升起的,在航空航天技术没有发展起来,这个命题我们无从证明,只能通过每天的经验来进行归纳总结,地球的年龄的100亿年,大约是一个10的12次方的数量级,也就是说,假设一个人从地球诞生开始计算命题2,以每天2个数据的速度,到现在他掌握的证据比太阳从东方升起的证据还要多,但是,这个命题依然是错误的。因此归纳法或者数学归纳法并不适用一切情况,但这并不影响其在所有证明方法中的重要作用。

这个命题的证明通过最小整数定理能够很容易看到,这些看起来似乎无关紧要而且显然的公理、命题其实有着重要的作用。

这个命题将为素数分解定理(唯一分解定理)的引出奠定基础.

《A First Course in Abstract Algebra with Applications》-chaper1-数论-关于素数的更多相关文章

  1. 《A First Course in Abstract Algebra with Applications》-chaper1-数论

    由于笔者在别的专栏多次介绍过数论,这里在<抽象代数基础教程>的专栏下,对于chaper1数论这一章节介绍的方式不那么“入门”. 首先来介绍一个代数中常用也是非常重要的证明方法:数学归纳法. ...

  2. 《A First Course in Abstract Algebra with Applications》-chaper1-数论-棣莫弗定理

    定理1.24 (棣莫弗定理) 对每个实数x和每个正整数n有 基于棣莫弗定理的推论如下:

  3. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in

    https://en.wikipedia.org/wiki/Congruence_relation In abstract algebra, a congruence relation (or sim ...

  4. 线性代数 -- Linear Algebra with Applications

    @.如果线性方程组无解,则称该方程组是不相容的(inconsistent). @.如果线性方程组至少存在一个解,则称该方程组是相容的(consistent). @.等价方程组(equivalent s ...

  5. Abstract Algebra chapter 7

    7.7:Encrypt each of the following RSA messages x so that x is divided into blocks of integers of len ...

  6. Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]

    最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...

  7. 数学类杂志SCI2013-2014影响因子

    ISSN Abbreviated Journal Title Full Title Category Subcategory Country total Cites IF        2013-20 ...

  8. Mathematics for Computer Graphics

    Mathematics for Computer Graphics 最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=105 ...

  9. 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书

    1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...

随机推荐

  1. wpa_supplicant与kernel交互

    wpa_supplicant与kernel交互的操作,一般需要先明确驱动接口,以及用户态和kernel态的接口函数,以此来进行调用操作.这里分为4个步骤讨论. 1.首先需要明确指定的驱动接口.因为有较 ...

  2. C语言文件基本操作

    1.用文本方式储存‘1’,‘0’,‘2’存入文件,然后用二进制方式从文件开头读出一个short型数据,并验证结果是否正确 #include<stdio.h> #include<str ...

  3. M2功能规格说明书

    1.目的: 这篇随笔是简述我们团队所做的工程所能实现的功能及方便用户的使用. 2.假定和约束: 我们先限定为本地连接数据库进行各种操作的实现.用户电脑中需要有FLASH工具及快播插件.其他只需要了解基 ...

  4. C++第一次课堂作业 circle

    Github上的代码提交

  5. iOS- 网络访问两种常用方式【GET & POST】实现的几个主要步骤

    1.前言 上次,在博客里谈谈了[GET & POST]的区别,这次准备主要是分享一下自己对[GET & POST]的理解和实现的主要步骤. 在这就不多废话了,直接进主题,有什么不足的欢 ...

  6. 解决ueditor编辑器图片在线管理图片无法显示

    使用ueditor,点击在线管理,服务器图片路径显示不正确,如下图所示  查看源码,如下:  发现图片src中中间多了一长串的项目跟路径,解决的办法是 把  jsp/controller.jsp 里面 ...

  7. (转)linux IO 内核参数调优 之 参数调节和场景分析

    1. pdflush刷新脏数据条件 (linux IO 内核参数调优 之 原理和参数介绍)上一章节讲述了IO内核调优介个重要参数参数. 总结可知cached中的脏数据满足如下几个条件中一个或者多个的时 ...

  8. Spring事务管理Transaction

    Spring提供了许多内置事务管理器实现: DataSourceTransactionManager:位于org.springframework.jdbc.datasource包中,数据源事务管理器, ...

  9. jQuery实现三级联动

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  10. 【python】用 sqlacodegen 将存在的数据库表 转化成model.py

    Flask的sqlalchemy对数据库表的模型提供了很多易用的方法.为了使用这些内容,需要将数据库表按照Flask识别的格式创建成Model,但是一般我们都是在已经创建好的数据库环境中开发Pytho ...