Marriage Match II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4021    Accepted Submission(s): 1309

Problem Description
Presumably, you all have known the question of stable marriage match. A girl will choose a boy; it is similar as the game of playing house we used to play when we are kids. What a happy time as so many friends playing together. And it is normal that a fight or a quarrel breaks out, but we will still play together after that, because we are kids. 
Now, there are 2n kids, n boys numbered from 1 to n, and n girls numbered from 1 to n. you know, ladies first. So, every girl can choose a boy first, with whom she has not quarreled, to make up a family. Besides, the girl X can also choose boy Z to be her boyfriend when her friend, girl Y has not quarreled with him. Furthermore, the friendship is mutual, which means a and c are friends provided that a and b are friends and b and c are friend. 
Once every girl finds their boyfriends they will start a new round of this game—marriage match. At the end of each round, every girl will start to find a new boyfriend, who she has not chosen before. So the game goes on and on.
Now, here is the question for you, how many rounds can these 2n kids totally play this game?
 
Input
There are several test cases. First is a integer T, means the number of test cases. 
Each test case starts with three integer n, m and f in a line (3<=n<=100,0<m<n*n,0<=f<n). n means there are 2*n children, n girls(number from 1 to n) and n boys(number from 1 to n).
Then m lines follow. Each line contains two numbers a and b, means girl a and boy b had never quarreled with each other. 
Then f lines follow. Each line contains two numbers c and d, means girl c and girl d are good friends.
 
Output
For each case, output a number in one line. The maximal number of Marriage Match the children can play.
 
Sample Input
1
4 5 2
1 1
2 3
3 2
4 2
4 4 
1 4
2 3
 
Sample Output
2
 
Author
starvae
 
Source
 题意:
有n个女生n个男生女生可以和她喜欢的男生配对也可以和她的朋友喜欢的男生配对,当所有的人都配对了时游戏结束,要求每一轮游戏中互相已经配对的两个人以后就不能再配对了问可以进行多少轮游戏。
输入t组数据
输入n,m,f,对人,m个喜欢关系,f个朋友关系
输入m行a b 表示女生a喜欢男生b
输入f行a b 表示女生a和女生b是朋友
代码:
//并查集处理配对关系,然后二分轮数,源点连向女生容量为轮数(每人玩这些次),女生连向可以配对的男生,
//容量为1(只能配对一次),男生连向汇点容量也是轮数。看最大流是否等于n*轮数。
//今下午脑子坏掉了,二分写挫了wa到死。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn=;
const int inf=0x7fffffff;
int mp[maxn][maxn],fat[maxn];
int find(int x){
return fat[x]==x?x:fat[x]=find(fat[x]);
}
void connect(int x,int y){
int xx=find(x),yy=find(y);
if(xx!=yy) fat[yy]=xx;
}
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int n,m,s,t;
vector<Edge>edges;
vector<int>g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void init(int n){
this->n=n;
for(int i=;i<n;i++) g[i].clear();
edges.clear();
}
void Addedge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));//反向弧
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool Bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int Dfs(int x,int a){
if(x==t||a==) return a;
int flow=,f;
for(int&i=cur[x];i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=Dfs(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[g[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s;this->t=t;
int flow=;
while(Bfs()){
memset(cur,,sizeof(cur));
flow+=Dfs(s,inf);
}
return flow;
}
}dc;
bool solve(int n,int mid){
dc.init(*n+);
for(int i=;i<=n;i++){
dc.Addedge(,i,mid);
for(int j=n+;j<=*n;j++)if(mp[i][j])
dc.Addedge(i,j,);
dc.Addedge(i+n,*n+,mid);
}
return n*mid==dc.Maxflow(,*n+);
}
int main()
{
int t,n,m,f;
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&n,&m,&f);
int a,b;
memset(mp,,sizeof(mp));
for(int i=;i<=*n;i++) fat[i]=i;
for(int i=;i<=m;i++){
scanf("%d%d",&a,&b);
mp[a][b+n]=;
}
for(int i=;i<=f;i++){
scanf("%d%d",&a,&b);
connect(a,b);
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(find(i)==find(j))
for(int k=n+;k<=*n;k++)
mp[i][k]=mp[j][k]=(mp[i][k]||mp[j][k]);
}
}
int l=,r=n,mid,ans=;
while(l<=r){
mid=(l+r)/;
if(solve(n,mid)){
ans=mid;
l=mid+;
}
else r=mid-;
}
printf("%d\n",ans);
}
return ;
}

HDU 3081 最大流+二分的更多相关文章

  1. HDU 3081 最大流+并查集

    题意:有n个男生和n个女生,玩结婚游戏,由女生选择男生:女生可以选择不会和她吵架的男生以及不会和她闺蜜吵架的男生,闺蜜的闺蜜也是闺蜜.问你最多可以进行多少轮,每一轮每个女生只能选择一个之前她没选过的男 ...

  2. hdu 3228 (最大流+二分)

    题意:一共有N个城市,一些城市里有金矿,一些城市里有仓库,金矿和仓库都有一个容量,有M条边,每条边是双向的,有一个权值,求将所有金矿里的储量都运送到仓库中,所需要经过的道路中,使最大的权值最小 思路: ...

  3. HDU 3277 最大流+二分

    Marriage Match III Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  4. HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)

    HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...

  5. HDU 3081 Marriage Match II(二分法+最大流量)

    HDU 3081 Marriage Match II pid=3081" target="_blank" style="">题目链接 题意:n个 ...

  6. HDU 3081 Marriage Match II (二分图,并查集)

    HDU 3081 Marriage Match II (二分图,并查集) Description Presumably, you all have known the question of stab ...

  7. HDU 1532 最大流入门

    1.HDU 1532 最大流入门,n个n条边,求第1点到第m点的最大流.只用EK做了一下. #include<bits/stdc++.h> using namespace std; #pr ...

  8. Risk UVA - 12264 拆点法+最大流+二分 最少流量的节点流量尽量多。

    /** 题目:Risk UVA - 12264 链接:https://vjudge.net/problem/UVA-12264 题意:给n个点的无权无向图(n<=100),每个点有一个非负数ai ...

  9. hdu 3081(二分+并查集+最大流||二分图匹配)

    Marriage Match II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. html常用小知识

    请求重定向:加载页面之后,除了用js做重定向之外,我们还可以直接用<meta>标签做重定向. <meta http-equiv="refresh" content ...

  2. Python3实现机器学习经典算法(四)C4.5决策树

    一.C4.5决策树概述 C4.5决策树是ID3决策树的改进算法,它解决了ID3决策树无法处理连续型数据的问题以及ID3决策树在使用信息增益划分数据集的时候倾向于选择属性分支更多的属性的问题.它的大部分 ...

  3. MyBatis中文文档

    http://mybatis.github.io/mybatis-3/zh/index.html

  4. Java简单工厂模式

    Java简单工厂模式 在阎宏博士的<JAVA与模式>一书中开头是这样描述简单工厂模式的:简单工厂模式是类的创建模式,又叫做静态工厂方法(Static Factory Method)模式.简 ...

  5. Fluent Python: @property

    Fluent Python 9.6节讲到hashable Class, 为了使Vector2d类可散列,有以下条件: (1)实现__hash__方法 (2)实现__eq__方法 (3)让Vector2 ...

  6. 嵌入式码农的10年Bug调试经验,值得一看

    下面这些都是我经历过的会导致难点bug的问题: 1.事件顺序.在处理事件时,提出下列问题会很有成效:事件可以以不同的顺序到达吗?如果我们没有接收到此事件会怎么样?如果此事件接连发生两次会怎么样?哪怕通 ...

  7. OJ错误命令解释

    ①Presentation Error (PE) : 虽然您的程序貌似输出了正确的结果,但是这个结果的格式有点问题. 请检查程序的输出是否多了或者少了空格(' ').制表符('\t')或者换行符('\ ...

  8. 20145214 《Java程序设计》第10周学习总结

    20145214 <Java程序设计>第10周学习总结 学习内容总结 计算机网络概述 在计算机网络中,现在命名IP地址的规定是IPv4协议,该协议规定每个IP地址由4个0-255之间的数字 ...

  9. 利用SqlServer的作业定时清除过期数据

    有时候我们的数据库中可能会有那么些存放动态数据的表,比如一些每天定时发出的消息通知信息等数据.这些数据我们只需要临时保存,一些老旧的数据需要定时去清除掉,不然时间一长的话单表数据堆积非常严重.导致数据 ...

  10. Jenkins系列-Jenkins添加git密钥对

    添加密钥 1.添加git用户和git密码对 ,用于git客户端从gitlab上拉取代码到本地