Marriage Match II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4021    Accepted Submission(s): 1309

Problem Description
Presumably, you all have known the question of stable marriage match. A girl will choose a boy; it is similar as the game of playing house we used to play when we are kids. What a happy time as so many friends playing together. And it is normal that a fight or a quarrel breaks out, but we will still play together after that, because we are kids. 
Now, there are 2n kids, n boys numbered from 1 to n, and n girls numbered from 1 to n. you know, ladies first. So, every girl can choose a boy first, with whom she has not quarreled, to make up a family. Besides, the girl X can also choose boy Z to be her boyfriend when her friend, girl Y has not quarreled with him. Furthermore, the friendship is mutual, which means a and c are friends provided that a and b are friends and b and c are friend. 
Once every girl finds their boyfriends they will start a new round of this game—marriage match. At the end of each round, every girl will start to find a new boyfriend, who she has not chosen before. So the game goes on and on.
Now, here is the question for you, how many rounds can these 2n kids totally play this game?
 
Input
There are several test cases. First is a integer T, means the number of test cases. 
Each test case starts with three integer n, m and f in a line (3<=n<=100,0<m<n*n,0<=f<n). n means there are 2*n children, n girls(number from 1 to n) and n boys(number from 1 to n).
Then m lines follow. Each line contains two numbers a and b, means girl a and boy b had never quarreled with each other. 
Then f lines follow. Each line contains two numbers c and d, means girl c and girl d are good friends.
 
Output
For each case, output a number in one line. The maximal number of Marriage Match the children can play.
 
Sample Input
1
4 5 2
1 1
2 3
3 2
4 2
4 4 
1 4
2 3
 
Sample Output
2
 
Author
starvae
 
Source
 题意:
有n个女生n个男生女生可以和她喜欢的男生配对也可以和她的朋友喜欢的男生配对,当所有的人都配对了时游戏结束,要求每一轮游戏中互相已经配对的两个人以后就不能再配对了问可以进行多少轮游戏。
输入t组数据
输入n,m,f,对人,m个喜欢关系,f个朋友关系
输入m行a b 表示女生a喜欢男生b
输入f行a b 表示女生a和女生b是朋友
代码:
//并查集处理配对关系,然后二分轮数,源点连向女生容量为轮数(每人玩这些次),女生连向可以配对的男生,
//容量为1(只能配对一次),男生连向汇点容量也是轮数。看最大流是否等于n*轮数。
//今下午脑子坏掉了,二分写挫了wa到死。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn=;
const int inf=0x7fffffff;
int mp[maxn][maxn],fat[maxn];
int find(int x){
return fat[x]==x?x:fat[x]=find(fat[x]);
}
void connect(int x,int y){
int xx=find(x),yy=find(y);
if(xx!=yy) fat[yy]=xx;
}
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int n,m,s,t;
vector<Edge>edges;
vector<int>g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void init(int n){
this->n=n;
for(int i=;i<n;i++) g[i].clear();
edges.clear();
}
void Addedge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));//反向弧
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool Bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int Dfs(int x,int a){
if(x==t||a==) return a;
int flow=,f;
for(int&i=cur[x];i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=Dfs(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[g[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s;this->t=t;
int flow=;
while(Bfs()){
memset(cur,,sizeof(cur));
flow+=Dfs(s,inf);
}
return flow;
}
}dc;
bool solve(int n,int mid){
dc.init(*n+);
for(int i=;i<=n;i++){
dc.Addedge(,i,mid);
for(int j=n+;j<=*n;j++)if(mp[i][j])
dc.Addedge(i,j,);
dc.Addedge(i+n,*n+,mid);
}
return n*mid==dc.Maxflow(,*n+);
}
int main()
{
int t,n,m,f;
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&n,&m,&f);
int a,b;
memset(mp,,sizeof(mp));
for(int i=;i<=*n;i++) fat[i]=i;
for(int i=;i<=m;i++){
scanf("%d%d",&a,&b);
mp[a][b+n]=;
}
for(int i=;i<=f;i++){
scanf("%d%d",&a,&b);
connect(a,b);
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(find(i)==find(j))
for(int k=n+;k<=*n;k++)
mp[i][k]=mp[j][k]=(mp[i][k]||mp[j][k]);
}
}
int l=,r=n,mid,ans=;
while(l<=r){
mid=(l+r)/;
if(solve(n,mid)){
ans=mid;
l=mid+;
}
else r=mid-;
}
printf("%d\n",ans);
}
return ;
}

HDU 3081 最大流+二分的更多相关文章

  1. HDU 3081 最大流+并查集

    题意:有n个男生和n个女生,玩结婚游戏,由女生选择男生:女生可以选择不会和她吵架的男生以及不会和她闺蜜吵架的男生,闺蜜的闺蜜也是闺蜜.问你最多可以进行多少轮,每一轮每个女生只能选择一个之前她没选过的男 ...

  2. hdu 3228 (最大流+二分)

    题意:一共有N个城市,一些城市里有金矿,一些城市里有仓库,金矿和仓库都有一个容量,有M条边,每条边是双向的,有一个权值,求将所有金矿里的储量都运送到仓库中,所需要经过的道路中,使最大的权值最小 思路: ...

  3. HDU 3277 最大流+二分

    Marriage Match III Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  4. HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)

    HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...

  5. HDU 3081 Marriage Match II(二分法+最大流量)

    HDU 3081 Marriage Match II pid=3081" target="_blank" style="">题目链接 题意:n个 ...

  6. HDU 3081 Marriage Match II (二分图,并查集)

    HDU 3081 Marriage Match II (二分图,并查集) Description Presumably, you all have known the question of stab ...

  7. HDU 1532 最大流入门

    1.HDU 1532 最大流入门,n个n条边,求第1点到第m点的最大流.只用EK做了一下. #include<bits/stdc++.h> using namespace std; #pr ...

  8. Risk UVA - 12264 拆点法+最大流+二分 最少流量的节点流量尽量多。

    /** 题目:Risk UVA - 12264 链接:https://vjudge.net/problem/UVA-12264 题意:给n个点的无权无向图(n<=100),每个点有一个非负数ai ...

  9. hdu 3081(二分+并查集+最大流||二分图匹配)

    Marriage Match II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. 【转】MMO即时战斗:技能实现

    转自 http://blog.csdn.net/cyblueboy83/article/details/41628743 一.前言 基本所有MMO游戏无论是回合制.策略类.即时战斗等等类型都需要有相应 ...

  2. JavaScript 之 对象/JSON/数组

    对象 简单说,所谓对象,就是一种无序的数据集合,由若干个“键值对”(key-value)构成. var obj = { p: 'Hello World' }; 上面代码中,大括号就定义了一个对象,它被 ...

  3. java学习过程小问题

    一:基本的需要注意点(基础语句); package my; public class hello { public static void main(String[] args) { // TODO ...

  4. Apache——访问控制

    Order 指定执行允许访问规则和拒绝访问规则 Deny 定义拒绝访问列表 Allow 定义允许访问列表 Order allow,deny  先执行允许,再执行拒绝 Order deny,allow ...

  5. Python3 小工具-ARP扫描

    from scapy.all import * import optparse import threading import os def scan(ipt): pkt=Ether(dst='ff: ...

  6. 计算器软件实现系列(五)策略模式+asp.net

    一 策略模式代码的编写 using System; using System.Collections.Generic; using System.Linq; using System.Web; /// ...

  7. Java中I/O流之Object流

    Java 中的 object 流:直接将 Object 对象写入或读出 1. serializable 接口:序列化,可以被序列化的,若确实需要将某个类的对象写在硬盘上或网络上,想把他们序列化成一个字 ...

  8. python中装饰器的原理以及实现,

    python版本 3.6 1.python的装饰器说白了就是闭包函数的一种应用场景,在运用的时候我们遵循 #开放封闭原则:对修改封闭,对拓展开放 2.什么是装饰器 #装饰他人的器具,本身可以是任意可调 ...

  9. MySQL中使用trim()删除两侧字符

    在某些情况下由于程序没处理好,导致数据表中有些字段的值会有空白字符出现,如 这样如果在严格比对name时会匹配不到.trim()函数可以解决这样的问题 作为trim()函数的子集,ltrim()函数是 ...

  10. 【Asp.Net】IIS应用程序池添加ASP.NET v4.0

    可能在安装.NET Framewrok 4.0之前,IIS就已经装好了,结果在IIS的应用程序池中只有.NET 2.0的Classic .NET AppPool和DefaultAppPool.在使用v ...