【bzoj1441】Min 扩展裴蜀定理
题目描述
给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小
输入
第一行给出数字N,代表有N个数 下面一行给出N个数
输出
S的最小值
样例输入
2
4059 -1782
样例输出
99
题解
扩展裴蜀定理
裴蜀定理:二元一次不定方程 $ax+by=c$ 存在整数解的充分必要条件是 $\gcd(a,b)|c$。
扩展裴蜀定理:改成n元一次不定方程,结论依然成立。
证明: $a_1x_1+a_2x_2$ 的取值范围为 $k·\gcd(a_1,a_2)$ ,相当于 $\gcd(a_1,a_2)$ 为新的系数, $k$ 为新的未知数,相当于合并了两个未知数。这样合并到低就是 $\gcd(a_1,a_2,...,a_n)x$,因此有整数解的充要条件是 $\gcd(a_1,a_2,...,a_n)|c$。
因此 $S$ 的取值集合就是 $\gcd(a_1,a_2,...,a_n)$ 的倍数,最小的正整数 $S$ 就是 $\gcd(a_1,a_2,...,a_n)$
#include <cstdio>
#include <algorithm>
using namespace std;
int main()
{
int n , x , ans = 0;
scanf("%d" , &n);
while(n -- ) scanf("%d" , &x) , ans = __gcd(ans , abs(x));
printf("%d\n" , ans);
return 0;
}
【bzoj1441】Min 扩展裴蜀定理的更多相关文章
- 【bzoj5028】小Z的加油店 扩展裴蜀定理+差分+线段树
题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.$m$ 次操作,每次给 $[l,r]$ 内的瓶子容量增加 $ ...
- 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map
题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...
- 【BZOJ1441】Min 拓展裴蜀定理
[BZOJ1441]Min Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数 ...
- [BZOJ1441&BZOJ2257&BZOJ2299]裴蜀定理
裴蜀定理 对于整系数方程ax+by=m,设d =(a,b) 方程有整数解当且仅当d|m 这个定理实际上在之前学习拓展欧几里得解不定方程的时候就已经运用到 拓展到多元的方程一样适用 BZOJ1441 给 ...
- 【BZOJ】1441: Min(裴蜀定理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...
- BZOJ 1441: Min(裴蜀定理)
BZOJ 1441:Min Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数 ...
- 【BZOJ-1441】Min 裴蜀定理 + 最大公约数
1441: Min Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 471 Solved: 314[Submit][Status][Discuss] De ...
- 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))
我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...
- 【初等数论】裴蜀定理&扩展欧几里得算法
裴蜀定理: 对于\(a,b\in N^*, x, y\in Z\),方程\(ax+by=k\)当且仅当\(gcd(a, b)|k\)时有解. 证明: 必要性显然. 充分性:只需证明当\(k=gcd(a ...
随机推荐
- 北京Uber优步司机奖励政策(12月27日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Servlet的5种方式实现表单提交(注册小功能)
Servlet的5种方式实现表单提交(注册小功能),后台获取表单数据 用servlet实现一个注册的小功能 ,后台获取数据. 注册页面: 注册页面代码 : <!DOCTYPE html> ...
- vim分屏功能总结
vim的分屏功能 总结起来,基本都是ctrl+w然后加上某一个按键字母,触发一个功能.(1)在shell里打开几个文件并且分屏: vim -On file1 file2 ... vim -on fil ...
- MySQL☞in语句
in语句: 1)列名 in(数值1,数值2,数值3…):求出满足该列的多个列值 格式: select 列名1,列名2 from 表名 where 列名 in (数值1,数值2,数值3...) 如下图 ...
- 使用postman实现半自动化
前些日子项目要上一个活动,其中有一个功能是幸运大转盘,用户可以随机抽奖,奖品有多种满减券及多种商品,但是奖品都是有抽中概率的,且有的商品还设置有库存,所以测试点便是测试抽奖的概率和库存.接下来拆分一下 ...
- Python 关键字参数和可变参数
关键字参数 如果你有一些具有许多参数的函数,而你又希望只对其中的一些进行指定,那么你可以通过命名它们来给这些参数赋值——这就是python关键字参数(Keyword Arguments)——我们使用命 ...
- JDBC中使用Properties类及配置文件的操作
同时发布于:https://blog.csdn.net/Activity_Time/article/details/81149710 一.properties配置文件 开发中获得连接的4个参数(驱动. ...
- vim—自动缩进(编写Python脚本)
大神推荐使用vim编写Python脚本,学而时积之,不亦乐乎! 使用vim编写Python脚本的时候不能正常缩进,需要修改vimrc文件 Ubuntu系统下vimrc文件的位置: $ cd /etc/ ...
- 转:Linux 编译安装 Mysql5.7
http://broqiang.com/2017/04/18/Mysql-Install-5.7.18-Linux-Compile/ 原文 Linux 编译安装 Mysql5.7 Ubuntu 下快速 ...
- Java学习个人备忘录之面向对象概念
对象,其实就是该类事物实实在在存在的个体. 类与对象之间的关系?类:一类事物的描述.对象:该类事物的实例.在java中通过new来创建的.举例来说,类就是汽车说明书,类只能在理论上造一辆汽车,并且这个 ...