[LOJ #6433]「PKUSC2018」最大前缀和
题目大意:给你一个$n(n\leqslant20)$项的数列$A$,设重排后的数列为$A'$,令$pre_p=\sum\limits_{i=1}^pA'_i$,求$max\{pre_i\}$的期望,乘$n!$
题解:令$f_S$为选$S$集合的数,重排后满足$\max\{pre_i\}=\sum\limits_{i=1}^{|S|}S_i$的方案数,$g_S$为选$S$集合数,重排后满足$\max\{pre_i\}\leqslant0$的方案数。发现若数列$B$满足$\sum\limits_{i=1}^{|B|}B_i>0$,那么任意在它前面插入一个数,都满足$f$的条件。若数列$B$满足$\max\{pre_i\}\leqslant0$,在它后面插入一个数后,只要$\sum\limits_{i=1}^{|B|}B_i\leqslant0$,就行了。
答案是$\sum\limits_{S}sum_Sf_Sg_{\bar S}$。
卡点:无
C++ Code:
#include <cstdio>
#define maxn 20
#define N (1 << maxn)
const int mod = 998244353;
inline void reduce(int &x) { x += x >> 31 & mod; } int n;
int s[maxn], f[N], g[N], sum[N];
int main() {
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
scanf("%d", s + i);
f[1 << i] = 1;
g[1 << i] = s[i] <= 0;
}
const int U = 1 << n, I = U - 1;
for (int i = 1; i < U; ++i) sum[i] = sum[i & i - 1] + s[__builtin_ctz(i)];
g[0] = 1;
for (int i = 0; i < U; ++i) if (__builtin_popcount(i) > 1) {
for (int j = i; j; j &= j - 1) {
int k = __builtin_ctz(j), l = i ^ 1 << k;
if (sum[i] <= 0) reduce(g[i] += g[l] - mod);
if (sum[l] > 0) reduce(f[i] += f[l] - mod);
}
}
for (int i = 0; i < U; ++i) reduce(sum[i] %= mod);
int ans = 0;
for (int i = 1; i < U; ++i) reduce(ans += static_cast<long long> (sum[i]) * f[i] % mod * g[I ^ i] % mod - mod);
printf("%d\n", ans);
return 0;
}
[LOJ #6433]「PKUSC2018」最大前缀和的更多相关文章
- LOJ 6433 「PKUSC2018」最大前缀和——状压DP
题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...
- Loj#6433「PKUSC2018」最大前缀和(状态压缩DP)
题面 Loj 题解 先转化题意,其实这题在乘了\(n!\)以后就变成了全排列中的最大前缀和的和(有点拗口).\(n\leq20\),考虑状压\(DP\) 考虑一个最大前缀和\(\sum\limits_ ...
- Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)
题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...
- LOJ#6433. 「PKUSC2018」最大前缀和 状压dp
原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...
- loj 6433 「PKUSC2018」最大前缀和 题解【DP】【枚举】【二进制】【排列组合】
这是个什么集合DP啊- 想过枚举断点但是不会处理接下来的问题了- 我好菜啊 题目描述 小 C 是一个算法竞赛爱好者,有一天小 C 遇到了一个非常难的问题:求一个序列的最大子段和. 但是小 C 并不会做 ...
- loj#6433. 「PKUSC2018」最大前缀和(状压dp)
传送门 今天\(PKUWC\)试机的题 看着边上的大佬们一个个\(A\)穿咱还是不会-- 我们考虑枚举最大前缀和,如果一个前缀\(1\)到\(p\)是最大前缀和,那么\(p\)后面的所有前缀和都要小于 ...
- 【LOJ】#6433. 「PKUSC2018」最大前缀和
题解 神仙的状压啊QAQ 设一个\(f[S]\)表示数字的集合为\(S\)时\(sum[S]\)为前缀最大值的方案数 \(g[S]\)表示数字集合为\(S\)时所有前缀和都小于等于0的方案数 答案就是 ...
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
随机推荐
- spring源码-Aware-3.4
一.Aware接口,这个也是spring的拓展之一,为啥要单独拿出来讲呢,因为他相比于BeanFactoryPostProcessor,BeanPostProcessor的实用性更加高,并且在具体的业 ...
- Tomcat7后台通过get接收数据处理乱码
Tomcat7后台通过get接收数据处理乱码 //因为tomcat7 默认将用get传来的数据用ISO-8859-1封装, //将ajax传过来的值解码,再转码,//因为tomcat7 默认将用get ...
- python 定位文件目录
经常有引用文件的地方,所以整理了一下如何定位文件目录的方法 定位当前文件的目录 import os file_path = os.path.dirname(__file__) 定位当前文件的父目录 i ...
- Java开发工程师(Web方向) - 01.Java Web开发入门 - 第4章.Maven
第4章--Maven Maven实战 Java Web应用的部署: 手动式: 编译:javac -cp $CATALINA_HOME/lib/servlet-api.jar web-inf/class ...
- 【转】《王者荣耀》技术总监复盘回炉历程:没跨过这三座大山,就是另一款MOBA霸占市场了
如今已经大获市场成功的<王者荣耀>一直是业内各方关注的对象,而我们也知道这款产品在成为国民级游戏之前,也遇到过一段鲜有人知的调优期.也就是在2015年8月18号正式不删档测试版本推出之后, ...
- 测试模拟 白屏 / FOUC
白屏和FOUC 白屏与无样式内容闪烁(FOUC)是因为不同浏览器加载与显示页面的机制不同而造成的. 我们可以通过一个实验来进行测试和模拟白屏.FOUC的现象,让我们更好的理解白屏.FOUC. 测试de ...
- block inline 和 inline-block
概念 block和inline这两个概念是简略的说法,完整确切的说应该是 block-level elements (块级元素) 和 inline elements (内联元素). block元素通常 ...
- 京东2018秋招c++岗 神奇数
题意大概是: 一个数比如242,把所有数字分成两组,而且两组的和相等,那么这个数就是神奇数,此时242,能够分成{2,2}和{4},所以242是神奇数. 题目要求输入n和m求[n,m]区间内神奇数的个 ...
- POJ 3498 March of the Penguins(网络最大流)
Description Somewhere near the south pole, a number of penguins are standing on a number of ice floe ...
- 20172305 2018-2019-1 《Java软件结构与数据结构》第一周学习总结
20172305 2018-2019-1 <Java软件结构与数据结构>第一周学习总结 教材学习内容总结 本周内容主要为书第一章和第二章的内容: 第一章 软件质量: 正确性(软件达到特定需 ...