hdu3879 Base Station 最大权闭合子图 边权有正有负
/**
题目:hdu3879 Base Station 最大权闭合子图 边权有正有负
链接:http://acm.hdu.edu.cn/showproblem.php?pid=3879
题意:给出n个地方可以建房子,给出每个地方建房子的费用,如果A,B两个地方建了房子,那么可以获得C的利润。
求建一些房子可以获得的最大利润。 思路:最大权闭合子图。 n个房子与t相连,容量为费用。如果A,B两个地方建了房子,那么可以获得利润C。可以新增一个点x,s->x,cap=C; x->a,cap=INF; x->b,cap=INF;
不懂可以先看这题:http://www.cnblogs.com/xiaochaoqun/p/7227268.html
求s-t最大流,结果为所有正价值之和-最大流。
或者: 求s-t最大流之后,此时dinic的vis为1的点表示在该最小割的S集合内。S集合除去s点的其他点就是需要裁员的人,从中可以获取人数,以及计算价值和。 */
#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cstdio>
#include<sstream>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int N = ;
struct Edge{
int from, to, cap, flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int n, m, s, t;
vector<Edge> edges;
vector<int> G[N];
bool vis[N];
LL d[N];
int cur[N]; void init(int n)
{
this->n = n;
for(int i = ; i <= n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
} bool BFS(){
memset(vis, , sizeof vis);
queue<int> Q;
Q.push(s);
d[s] = ;
vis[s] = ;
while(!Q.empty()){
int x = Q.front(); Q.pop();
for(int i = ; i < G[x].size(); i++){
Edge &e = edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to] = ;
d[e.to] = d[x]+;
Q.push(e.to);
}
}
}
return vis[t];
} LL DFS(int x,LL a){
if(x==t||a==) return a;
LL flow = , f;
for(int &i = cur[x]; i < G[x].size(); i++){
Edge& e = edges[G[x][i]];
if(d[x]+==d[e.to]&&(f=DFS(e.to,min(a,(LL)e.cap-e.flow)))>){
e.flow += f;
edges[G[x][i]^].flow -= f;
flow += f;
a -= f;
if(a==) break;
}
}
return flow;
} LL Maxflow(int s,int t){
this->s = s, this->t = t;
LL flow = ;
while(BFS()){
memset(cur, , sizeof cur);
flow += DFS(s,INF);
}
return flow;
}
};
int main()
{
int n, m;
while(scanf("%d%d",&n,&m)==)
{
int s = , t = n++m;
Dinic dinic;
dinic.init(t);
int w;
for(int i = ; i <= n; i++){
scanf("%d",&w);
dinic.AddEdge(i,t,w);
}
int u, v;
LL sum = ;
for(int i = ; i <= m; i++){
scanf("%d%d%d",&u,&v,&w);
dinic.AddEdge(s,i+n,w);
dinic.AddEdge(i+n,u,INF);
dinic.AddEdge(i+n,v,INF);
sum += w;
}
printf("%lld\n",sum-dinic.Maxflow(s,t)); }
return ;
}
hdu3879 Base Station 最大权闭合子图 边权有正有负的更多相关文章
- poj2987 Firing 最大权闭合子图 边权有正有负
/** 题目:poj2987 Firing 最大权闭合子图 边权有正有负 链接:http://poj.org/problem?id=2987 题意:由于金融危机,公司要裁员,如果裁了员工x,那么x的下 ...
- HDU 3879 Base Station(最大权闭合子图)
将第i个用户和他需要的基站连边,转化成求二分图的最大权闭合子图. 答案=正权点之和-最小割. # include <cstdio> # include <cstring> # ...
- hdu 3879 Base Station 最大权闭合图
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3879 A famous mobile communication company is plannin ...
- hiho 第119周 最大权闭合子图
描述 周末,小Hi和小Ho所在的班级决定举行一些班级建设活动. 根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值. 班级一共有M名学生(编 ...
- [HIHO119]网络流五·最大权闭合子图(最大流)
题目链接:http://hihocoder.com/contest/hiho119/problem/1 题意:中文题意. 由于1≤N≤200,1≤M≤200.最极端情况就是中间所有边都是满的,一共有N ...
- 洛谷 P2762 太空飞行计划问题 P3410 拍照【最大权闭合子图】题解+代码
洛谷 P2762 太空飞行计划问题 P3410 拍照[最大权闭合子图]题解+代码 最大权闭合子图 定义: 如果对于一个点集合,其中任何一个点都不能到达此集合以外的点,这就叫做闭合子图.每个点都有一个权 ...
- [HihoCoder1398]网络流五·最大权闭合子图
题目大意:有$N$项活动$M$个人,每个活动$act_i$有一个正的权值$a_i$,每个人$stu_i$有一个负的权值$b_i$.每项活动能够被完成当且仅当该项活动所需的所有人到场.如何选择活动使最终 ...
- 洛谷 P2762 太空飞行计划问题 【最大权闭合子图+最小割】
--一道难在读入的题. 最后解决方案直接getline一行然后是把读优拆掉放进函数,虽然很丑但是过了. 然后就是裸的最大权闭合子图了,把仪器当成负权点向t连流量为其价格的边,s向实验连流量为实验报酬的 ...
- HDU 3879 Base Station(最大权闭合子图)
经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...
随机推荐
- 转: 学ppt的网址与素材
转:http://www.jianshu.com/p/89b261e0b8f6 你说你要学ppt,可你知道这些吗? 之前身边的同学总说做PPT很难,每次做ppt都头疼,我都对此很不屑,直到前一段开 ...
- JS设计模式基础
设计模式: 通过封装.继承.多态.组合等技术的反复使用,提炼出一些可重复使用的面向对象设计技巧. 1.多态(’做什么‘和’谁去做‘分开) 多态指同一个实体同时具有多种形式. 同一操作应用于不同的对象上 ...
- OOP Class具体解释
对象[编辑] 对象(Object)是类的实例.比如."狗"这个类列举狗的特点,从而使这个类定义了世界上全部的狗. 而莱丝这个对象则是一条详细的狗,它的属性也是详细的.狗有皮毛颜色. ...
- ionic 隐藏header-ionic中隐藏头部header
ionic 中隐藏头部header 通过 hide-nav-bar="true" 来实现 <ion-view hide-nav-bar="true"> ...
- DNS message解析
案例吐个槽,命苦啊,要自己动手解包. 另外,这里的内容是半路找来的,如果有冲突,自行翻阅rfc1035.我还没校正过. The Structure 如下图: 所有的DNS message都包含了下面这 ...
- RSA/DSA 密钥的工作原理
下面从整体上粗略的介绍了 RSA/DSA 密钥的工作原理.让我们从一种假想的情形开始,假定我们想用 RSA 认证允许一台本地的 Linux 工作站(称作 localbox)打开 remotebox 上 ...
- spring bean parent属性详解
必要条件:1.子bean必须与父bean保持兼容,也就是说子bean中必须有父bean定义的所有属性. 2.父bean必须是抽象bean或者定义lazy-init=true也就是不让bean工厂实例化 ...
- SchemaExport
不在xml中配置 <!-- Drop and re-create the database schema on startup <property name ...
- ios8 横屏
iOS8横屏时,状态栏会消失 使用以下代码可以阻止状态栏消失 override func prefersStatusBarHidden() -> Bool { return false }
- iTunes 无法添加 iPhone 自定义铃声
本篇文章由:http://xinpure.com/itunes-unable-to-add-iphone-custom-ringtones/ 新版本 iTunes 需要在 菜单栏 -> 文件 中 ...